Rhianna R R Blyth, Stèphanie A Laversin, Russell B Foxall, Constantinos Savva, Ellen Copson, Ramsey I Cutress, Charles N Birts, Stephen A Beers
{"title":"Development and characterisation of a novel 3D in vitro model of obesity-associated breast cancer as a tool for drug testing.","authors":"Rhianna R R Blyth, Stèphanie A Laversin, Russell B Foxall, Constantinos Savva, Ellen Copson, Ramsey I Cutress, Charles N Birts, Stephen A Beers","doi":"10.1038/s41523-025-00766-3","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is associated with worse breast cancer outcomes and decreased therapeutic efficacy. However, the mechanisms driving obesity-associated therapy resistance remain unclear; in part due to a lack of suitable models that recapitulate the obese tumour microenvironment. To address this, we developed a 3D in vitro model of obesity-associated breast cancer, to investigate biological mechanisms and to use as a drug testing tool. A penta-culture system was developed by co-culturing adipocyte spheroids with breast tumour cells, myoepithelial cells, macrophages, and fibroblasts in a collagen matrix. Tumour cells and macrophages infiltrated adipocyte spheroids, replicating the inflamed-adipose border typical of obese patients. This model was then assessed as a drug testing platform. Obese cultures exhibited increased sensitivity to metformin and, conversely, resistance to paclitaxel, compared to non-obese cultures. This 3D organotypic model effectively recapitulates key features of the obese adipose tumour microenvironment, providing a useful tool to interrogate mechanisms underpinning obesity-related therapy resistance.</p>","PeriodicalId":19247,"journal":{"name":"NPJ Breast Cancer","volume":"11 1","pages":"50"},"PeriodicalIF":7.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125370/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41523-025-00766-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity is associated with worse breast cancer outcomes and decreased therapeutic efficacy. However, the mechanisms driving obesity-associated therapy resistance remain unclear; in part due to a lack of suitable models that recapitulate the obese tumour microenvironment. To address this, we developed a 3D in vitro model of obesity-associated breast cancer, to investigate biological mechanisms and to use as a drug testing tool. A penta-culture system was developed by co-culturing adipocyte spheroids with breast tumour cells, myoepithelial cells, macrophages, and fibroblasts in a collagen matrix. Tumour cells and macrophages infiltrated adipocyte spheroids, replicating the inflamed-adipose border typical of obese patients. This model was then assessed as a drug testing platform. Obese cultures exhibited increased sensitivity to metformin and, conversely, resistance to paclitaxel, compared to non-obese cultures. This 3D organotypic model effectively recapitulates key features of the obese adipose tumour microenvironment, providing a useful tool to interrogate mechanisms underpinning obesity-related therapy resistance.
期刊介绍:
npj Breast Cancer publishes original research articles, reviews, brief correspondence, meeting reports, editorial summaries and hypothesis generating observations which could be unexplained or preliminary findings from experiments, novel ideas, or the framing of new questions that need to be solved. Featured topics of the journal include imaging, immunotherapy, molecular classification of disease, mechanism-based therapies largely targeting signal transduction pathways, carcinogenesis including hereditary susceptibility and molecular epidemiology, survivorship issues including long-term toxicities of treatment and secondary neoplasm occurrence, the biophysics of cancer, mechanisms of metastasis and their perturbation, and studies of the tumor microenvironment.