{"title":"Nano-hydroxyapatite doped tyramine gelatin/silk fibroin scaffold for the regeneration of cancellous bone defects.","authors":"Lina Yang, Mengting Wang, Caixing Peng, Xiang Gong, Lihong Fan, Shuhua Liu, Shengxiang Tao","doi":"10.1177/08853282251347346","DOIUrl":null,"url":null,"abstract":"<p><p>Gelatin (G) and silk fibroin (SF) are well-established as scaffold materials for bone regeneration; however, their limited binding abilities and mechanical properties often result in less-than-ideal outcomes. In this study, we sought to enhance the stability of a silk fibroin/gelatin biomimetic scaffold by introducing a tyramine bond to the gelatin and incorporating nanohydroxyapatite as a bioactive element. This innovation led to the development of a more robust silk fibroin/nano-hydroxyapatite/gelatin tyramine biomimetic scaffold (SHGT). The biomimetic scaffold was fabricated through an enzymatic reaction catalyzed by horseradish peroxidase/hydrogen peroxide (HRP/H<sub>2</sub>O<sub>2</sub>), which facilitated the interaction between a high concentration of silk fibroin (17%) and gelatin tyramine (GT). Additionally, nano-hydroxyapatite (nHA) was incorporated as a bioactive filler to promote bone repair. Our findings indicated that the SHG biomimetic scaffold, initially designed as a sponge, was transformed into an SHGT scaffold with improved brittle fracture resistance, thus broadening its potential applications in bone reconstruction. Moreover, the data showed that combining GT with RGD sequences and HA as a bioactive component significantly enhanced the viability of bone marrow stromal cells (BMSCs) cultured on the scaffold. This synergistic effect highlights the potential of the SHGT scaffold as a promising material for bone tissue engineering.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251347346"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251347346","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gelatin (G) and silk fibroin (SF) are well-established as scaffold materials for bone regeneration; however, their limited binding abilities and mechanical properties often result in less-than-ideal outcomes. In this study, we sought to enhance the stability of a silk fibroin/gelatin biomimetic scaffold by introducing a tyramine bond to the gelatin and incorporating nanohydroxyapatite as a bioactive element. This innovation led to the development of a more robust silk fibroin/nano-hydroxyapatite/gelatin tyramine biomimetic scaffold (SHGT). The biomimetic scaffold was fabricated through an enzymatic reaction catalyzed by horseradish peroxidase/hydrogen peroxide (HRP/H2O2), which facilitated the interaction between a high concentration of silk fibroin (17%) and gelatin tyramine (GT). Additionally, nano-hydroxyapatite (nHA) was incorporated as a bioactive filler to promote bone repair. Our findings indicated that the SHG biomimetic scaffold, initially designed as a sponge, was transformed into an SHGT scaffold with improved brittle fracture resistance, thus broadening its potential applications in bone reconstruction. Moreover, the data showed that combining GT with RGD sequences and HA as a bioactive component significantly enhanced the viability of bone marrow stromal cells (BMSCs) cultured on the scaffold. This synergistic effect highlights the potential of the SHGT scaffold as a promising material for bone tissue engineering.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.