Multifaceted Rhizobacterial Co-Inoculation Enhances Drought-Stress Tolerance in Tomato: Insights Into Physiological, Biochemical, and Molecular Responses.
Waquar Akhter Ansari, Mohammad Shahid, Zaryab Shafi, Mohammad Abul Farah, Mohammad Tarique Zeyad, Khalid Mashay Al-Anazi, Lukman Ahamad
{"title":"Multifaceted Rhizobacterial Co-Inoculation Enhances Drought-Stress Tolerance in Tomato: Insights Into Physiological, Biochemical, and Molecular Responses.","authors":"Waquar Akhter Ansari, Mohammad Shahid, Zaryab Shafi, Mohammad Abul Farah, Mohammad Tarique Zeyad, Khalid Mashay Al-Anazi, Lukman Ahamad","doi":"10.1002/jobm.70065","DOIUrl":null,"url":null,"abstract":"<p><p>Drought-tolerant multifunctional soil bacteria can increase drought tolerance mechanisms in plants. Here, rhizobacteria CRB-4 and SPGPR-11 were isolated and their single and co-inoculation effect was evaluated in drought-stressed tomato plants. Isolates were selected based on their preliminary polyethylene glycol (PEG) screening, and plant growth-promoting properties. Increasing water stress adversely affected growth and physiological attributes of tomato plant. However, plant growth-promoting bacteria (PGPB), particularly their combined inoculation, alleviated drought stress. For instance, CRB-4, SPGPR-11 and their co-inoculation significantly increased root biomass (33.3, 37.5% and 45.4%), total chlorophyll (17.5, 15.6% and 19.2%) and carotenoid content (20, 30.4% and 48.3%) in 3%-PEG-stressed tomatoes. Similarly, co-inoculation of 3%-PEG-treated plants with PGP isolates resulted in a significant increase in Fv/Fm (50%), Fv'/Fm' (29.4%), PS-II (44.4%), Pq (40%), NPQ (40%), and effective electron transfer rate (37.5%). Furthermore, under 5%-PEG stress, CRB-4, SPGPR-11, and their co-inoculation enhanced drought stress resilience in tomato by improving leaf gas exchange attributes. Combined inoculation significantly enhanced gs (19%), Ci (31.2%), transpiration rate (41%), water vapor deficit (38.7%), iWUE (33.7%), and photosynthetic rate (33.3%) in 5%-PEG-stressed tomatoes. Among the treatments, co-inoculations significantly enhanced the antioxidant defense responses in drought-stressed tomatoes. Concurrently, qRT-PCR analysis revealed a significant upregulation in ROS scavenging genes, SOD, CAT, APX, GR, and POD, by 6.53, 14.08, 11.72, 10.12, and 5.95-fold, respectively, in drought-stressed plants co-inoculated with bacterial strains. This study concludes that PGP isolates CRB-4 and SPGPR-11, alone or in combination, offer an effective, eco-friendly solution for improving drought resilience in tomatoes.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e70065"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.70065","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drought-tolerant multifunctional soil bacteria can increase drought tolerance mechanisms in plants. Here, rhizobacteria CRB-4 and SPGPR-11 were isolated and their single and co-inoculation effect was evaluated in drought-stressed tomato plants. Isolates were selected based on their preliminary polyethylene glycol (PEG) screening, and plant growth-promoting properties. Increasing water stress adversely affected growth and physiological attributes of tomato plant. However, plant growth-promoting bacteria (PGPB), particularly their combined inoculation, alleviated drought stress. For instance, CRB-4, SPGPR-11 and their co-inoculation significantly increased root biomass (33.3, 37.5% and 45.4%), total chlorophyll (17.5, 15.6% and 19.2%) and carotenoid content (20, 30.4% and 48.3%) in 3%-PEG-stressed tomatoes. Similarly, co-inoculation of 3%-PEG-treated plants with PGP isolates resulted in a significant increase in Fv/Fm (50%), Fv'/Fm' (29.4%), PS-II (44.4%), Pq (40%), NPQ (40%), and effective electron transfer rate (37.5%). Furthermore, under 5%-PEG stress, CRB-4, SPGPR-11, and their co-inoculation enhanced drought stress resilience in tomato by improving leaf gas exchange attributes. Combined inoculation significantly enhanced gs (19%), Ci (31.2%), transpiration rate (41%), water vapor deficit (38.7%), iWUE (33.7%), and photosynthetic rate (33.3%) in 5%-PEG-stressed tomatoes. Among the treatments, co-inoculations significantly enhanced the antioxidant defense responses in drought-stressed tomatoes. Concurrently, qRT-PCR analysis revealed a significant upregulation in ROS scavenging genes, SOD, CAT, APX, GR, and POD, by 6.53, 14.08, 11.72, 10.12, and 5.95-fold, respectively, in drought-stressed plants co-inoculated with bacterial strains. This study concludes that PGP isolates CRB-4 and SPGPR-11, alone or in combination, offer an effective, eco-friendly solution for improving drought resilience in tomatoes.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).