Accurate Tracking of Locomotory Kinematics in Mice Moving Freely in Three-Dimensional Environments.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2025-06-25 Print Date: 2025-06-01 DOI:10.1523/ENEURO.0045-25.2025
Bogna M Ignatowska-Jankowska, Lakshmipriya I Swaminathan, Tara H Turkki, Dmitriy Sakharuk, Aysen Gurkan Ozer, Alexander Kuck, Marylka Yoe Uusisaari
{"title":"Accurate Tracking of Locomotory Kinematics in Mice Moving Freely in Three-Dimensional Environments.","authors":"Bogna M Ignatowska-Jankowska, Lakshmipriya I Swaminathan, Tara H Turkki, Dmitriy Sakharuk, Aysen Gurkan Ozer, Alexander Kuck, Marylka Yoe Uusisaari","doi":"10.1523/ENEURO.0045-25.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Marker-based motion capture (MBMC) is a powerful tool for precise, high-speed, three-dimensional tracking of animal movements, enabling detailed study of behaviors ranging from subtle limb trajectories to broad spatial exploration. Despite its proven utility in larger animals, MBMC has remained underutilized in mice due to the difficulty of robust marker attachment during unrestricted behavior. In response to this challenge, markerless tracking methods, facilitated by machine learning, have become the standard in small animal studies due to their simpler experimental setup. However, trajectories obtained with markerless approaches at best approximate ground-truth kinematics, with accuracy strongly dependent on video resolution, training dataset quality, and computational resources for data processing. Here, we overcome the primary limitation of MBMC in mice by implanting minimally invasive markers that remain securely attached over weeks of recordings. This technique produces high-resolution, artifact-free trajectories, eliminating the need for extensive post-processing. We demonstrate the advantages of MBMC by resolving subtle drug-induced kinematic changes that become apparent only within specific behavioral contexts, necessitating precise three-dimensional tracking beyond simple flat-surface locomotion. Furthermore, MBMC uniquely captures the detailed spatiotemporal dynamics of harmaline-induced tremors, revealing previously inaccessible correlations between body parts and thus significantly improving the translational value of preclinical tremor models. While markerless tracking remains optimal for many behavioral neuroscience studies in which general posture estimation suffices, MBMC removes barriers to investigations demanding greater precision, reliability, and low-noise trajectories. This capability significantly broadens the scope for inquiry into the neuroscience of movement and related fields.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0045-25.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Marker-based motion capture (MBMC) is a powerful tool for precise, high-speed, three-dimensional tracking of animal movements, enabling detailed study of behaviors ranging from subtle limb trajectories to broad spatial exploration. Despite its proven utility in larger animals, MBMC has remained underutilized in mice due to the difficulty of robust marker attachment during unrestricted behavior. In response to this challenge, markerless tracking methods, facilitated by machine learning, have become the standard in small animal studies due to their simpler experimental setup. However, trajectories obtained with markerless approaches at best approximate ground-truth kinematics, with accuracy strongly dependent on video resolution, training dataset quality, and computational resources for data processing. Here, we overcome the primary limitation of MBMC in mice by implanting minimally invasive markers that remain securely attached over weeks of recordings. This technique produces high-resolution, artifact-free trajectories, eliminating the need for extensive post-processing. We demonstrate the advantages of MBMC by resolving subtle drug-induced kinematic changes that become apparent only within specific behavioral contexts, necessitating precise three-dimensional tracking beyond simple flat-surface locomotion. Furthermore, MBMC uniquely captures the detailed spatiotemporal dynamics of harmaline-induced tremors, revealing previously inaccessible correlations between body parts and thus significantly improving the translational value of preclinical tremor models. While markerless tracking remains optimal for many behavioral neuroscience studies in which general posture estimation suffices, MBMC removes barriers to investigations demanding greater precision, reliability, and low-noise trajectories. This capability significantly broadens the scope for inquiry into the neuroscience of movement and related fields.

在三维环境中自由运动的小鼠运动运动学的精确跟踪。
基于标记的运动捕捉(MBMC)是一种强大的工具,用于精确,高速,三维跟踪动物运动,可以详细研究从微妙的肢体轨迹到广泛的空间探索的行为。尽管MBMC在大型动物中已被证明具有实用价值,但由于在不受限制的行为中难以形成牢固的标记物附着,因此MBMC在小鼠中的应用仍然不足。为了应对这一挑战,由机器学习促进的无标记跟踪方法,由于其更简单的实验设置,已成为小动物研究的标准。然而,使用无标记方法获得的轨迹最多只能近似于真实的运动学,其精度强烈依赖于视频分辨率、训练数据集质量和数据处理的计算资源。在这里,我们通过植入微创标记物来克服小鼠MBMC的主要局限性,这些标记物可以在数周的记录中保持安全附着。该技术产生高分辨率,无伪影轨迹,消除了大量后处理的需要。我们展示了MBMC的优势,通过解决微妙的药物引起的运动学变化,这些变化只有在特定的行为环境中才会变得明显,需要精确的三维跟踪,而不是简单的平面运动。此外,MBMC独特地捕获了盐碱诱发震颤的详细时空动态,揭示了以前无法获得的身体部位之间的相关性,从而显着提高了临床前震颤模型的转化价值。虽然无标记跟踪仍然是许多行为神经科学研究的最佳选择,在这些研究中,一般的姿势估计就足够了,但MBMC消除了要求更高精度、可靠性和低噪声轨迹的研究障碍。这种能力大大拓宽了研究运动神经科学和相关领域的范围。研究小鼠的精细运动行为需要精确和逼真的数据,而无标记方法往往难以提供这些数据。虽然基于标记的运动捕捉是高分辨率运动学分析的黄金标准,但其在自由移动小鼠中的应用受到标记使用挑战的限制。这项工作通过引入具有可更换反射头的可植入标记来克服这些障碍,从根本上改变了在各种行为和实验条件下强大的高清3D跟踪的可行性。通过检测细微的现象,如harmaline诱发的震颤,具有无标记跟踪无法比拟的时空细节,这种方法为推进啮齿动物运动控制和感觉运动整合的研究提供了有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信