{"title":"Wnt/β-catenin regulates Gli1 + osteogenic progenitors in condylar subchondral bone development and osteoarthritis.","authors":"Jie Wang, Lin Sun, Yi Zhang, Shuo Chen, Yang He","doi":"10.1186/s12891-025-08765-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gli1 has been identified as a marker of osteogenic progenitors in the condylar subchondral bone. The Wnt/β-catenin signaling pathway is known to regulate stem cell proliferation and differentiation in bone. Whether Wnt/β-catenin signaling pathway could influence Gli1 + osteogenic progenitors remains unclear. Here, we aimed to investigate the role and related mechanisms of Wnt/β-catenin signaling in the regulation of Gli1 + osteogenic progenitors in condylar development and temporomandibular joint osteoarthritis (TMJOA).</p><p><strong>Methods: </strong>We generated Gli1-Cre<sup>ERT2</sup>;tdTomato mice to perform lineage tracing; We generated Gli1-Cre<sup>ERT2</sup>; β-catenin<sup>fl/fl</sup> mice, in which β-catenin was lost in the Gli1 + lineage to examine the role of Wnt/β-catenin signaling pathway in regulating the proliferation and differentiation of Gli1 + cells. The β-catenin CKO mice and their wild-type (WT) littermates were induced at 3 days and were euthanized 1, 2 or 4 weeks after induction; We induced a TMJOA model through a unilateral partial discectomy (UPD) of the temporomandibular joint disc in 6-week-old tamoxifen-treated Gli1-Cre<sup>ERT2</sup>;β-catenin<sup>fl/fl</sup>;tdTomato mice and control group (Gli1-Cre<sup>ERT2</sup>;tdTomato mice). We harvested the mandibles at 4 weeks post-surgery.</p><p><strong>Results: </strong>Conditional knockout of β-catenin inhibited the osteogenic activity of Gli1 + progenitor cells during condylar subchondral bone development. In discectomy-induced TMJOA, the overactivation of Gli1 in subchondral bone drove pathological osteogenesis and aberrant subchondral bone remodeling. Deletion of β-catenin in Gli1 + cells mitigated excessive Gli1 + cells activation and ectopic mineralization.</p><p><strong>Conclusion: </strong>Our findings establish Wnt/β-catenin signaling as a key regulator of Gli1 + progenitor cell fate determination in both bone development and TMJOA pathogenesis.</p>","PeriodicalId":9189,"journal":{"name":"BMC Musculoskeletal Disorders","volume":"26 1","pages":"533"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125846/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Musculoskeletal Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12891-025-08765-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Gli1 has been identified as a marker of osteogenic progenitors in the condylar subchondral bone. The Wnt/β-catenin signaling pathway is known to regulate stem cell proliferation and differentiation in bone. Whether Wnt/β-catenin signaling pathway could influence Gli1 + osteogenic progenitors remains unclear. Here, we aimed to investigate the role and related mechanisms of Wnt/β-catenin signaling in the regulation of Gli1 + osteogenic progenitors in condylar development and temporomandibular joint osteoarthritis (TMJOA).
Methods: We generated Gli1-CreERT2;tdTomato mice to perform lineage tracing; We generated Gli1-CreERT2; β-cateninfl/fl mice, in which β-catenin was lost in the Gli1 + lineage to examine the role of Wnt/β-catenin signaling pathway in regulating the proliferation and differentiation of Gli1 + cells. The β-catenin CKO mice and their wild-type (WT) littermates were induced at 3 days and were euthanized 1, 2 or 4 weeks after induction; We induced a TMJOA model through a unilateral partial discectomy (UPD) of the temporomandibular joint disc in 6-week-old tamoxifen-treated Gli1-CreERT2;β-cateninfl/fl;tdTomato mice and control group (Gli1-CreERT2;tdTomato mice). We harvested the mandibles at 4 weeks post-surgery.
Results: Conditional knockout of β-catenin inhibited the osteogenic activity of Gli1 + progenitor cells during condylar subchondral bone development. In discectomy-induced TMJOA, the overactivation of Gli1 in subchondral bone drove pathological osteogenesis and aberrant subchondral bone remodeling. Deletion of β-catenin in Gli1 + cells mitigated excessive Gli1 + cells activation and ectopic mineralization.
Conclusion: Our findings establish Wnt/β-catenin signaling as a key regulator of Gli1 + progenitor cell fate determination in both bone development and TMJOA pathogenesis.
期刊介绍:
BMC Musculoskeletal Disorders is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of musculoskeletal disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
The scope of the Journal covers research into rheumatic diseases where the primary focus relates specifically to a component(s) of the musculoskeletal system.