Sustainable starch-microcellulose composite hydrogels for efficient removal of heavy metals from water.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Talles B da Costa, Paulo H Camani, Rafaela R Ferreira, Alana G Souza, Melissa G A Vieira, Derval Dos S Rosa
{"title":"Sustainable starch-microcellulose composite hydrogels for efficient removal of heavy metals from water.","authors":"Talles B da Costa, Paulo H Camani, Rafaela R Ferreira, Alana G Souza, Melissa G A Vieira, Derval Dos S Rosa","doi":"10.1016/j.ijbiomac.2025.144710","DOIUrl":null,"url":null,"abstract":"<p><p>This work investigates the development of sustainable composite hydrogels based on corn starch and microfibrillated cellulose (MFC) derived from eucalyptus sawdust for the removal of copper from aqueous environments. The incorporation of MFC into the starch matrix reduced solubility from 55.2 % to 36.4 %, increased true density from 1.466 to 1.525 g/cm<sup>3</sup>, and decreased surface area with increasing MFC content (from 4.010 to 1.814 m<sup>2</sup>/g). The MFC presented the following metallic affinity order: Cu<sup>2+</sup> > Mn<sup>3+</sup> > Ni<sup>2+</sup> > Zn<sup>2+</sup> > Cd<sup>2+</sup> > Cr<sup>6+</sup>. Adsorption experiments showed enhanced Cu<sup>2+</sup> removal with increasing MFC content, with the Starch/MFC-5 % hydrogel achieving a maximum removal efficiency of 52.4 % and sorption capacity of 0.258 mmol/g. Langmuir isotherms provided the best fit to the equilibrium data (R<sup>2</sup> = 0.998), and the Dubinin-Radushkevich analysis indicated a shift from physisorption (E = 2.42 kJ/mol) to chemisorption (E = 8.11 kJ/mol). Kinetics equilibrium time was reached between 480 and 780 min, with best description by pseudo second-order model. The reuse of hydrogel was achieved for up to four sorption/desorption cycles. The mechanisms of Cu<sup>2+</sup> sorption involved interactions with the functional groups present on the materials and cation exchange. These results confirm that starch/MFC hydrogels are promising, low-cost, and biodegradable materials for the efficient removal of metal ions from contaminated water.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"144710"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.144710","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the development of sustainable composite hydrogels based on corn starch and microfibrillated cellulose (MFC) derived from eucalyptus sawdust for the removal of copper from aqueous environments. The incorporation of MFC into the starch matrix reduced solubility from 55.2 % to 36.4 %, increased true density from 1.466 to 1.525 g/cm3, and decreased surface area with increasing MFC content (from 4.010 to 1.814 m2/g). The MFC presented the following metallic affinity order: Cu2+ > Mn3+ > Ni2+ > Zn2+ > Cd2+ > Cr6+. Adsorption experiments showed enhanced Cu2+ removal with increasing MFC content, with the Starch/MFC-5 % hydrogel achieving a maximum removal efficiency of 52.4 % and sorption capacity of 0.258 mmol/g. Langmuir isotherms provided the best fit to the equilibrium data (R2 = 0.998), and the Dubinin-Radushkevich analysis indicated a shift from physisorption (E = 2.42 kJ/mol) to chemisorption (E = 8.11 kJ/mol). Kinetics equilibrium time was reached between 480 and 780 min, with best description by pseudo second-order model. The reuse of hydrogel was achieved for up to four sorption/desorption cycles. The mechanisms of Cu2+ sorption involved interactions with the functional groups present on the materials and cation exchange. These results confirm that starch/MFC hydrogels are promising, low-cost, and biodegradable materials for the efficient removal of metal ions from contaminated water.

可持续淀粉-微纤维素复合水凝胶,有效去除水中重金属。
本研究研究了基于玉米淀粉和桉树木屑提取的微纤化纤维素(MFC)的可持续复合水凝胶的开发,用于去除水环境中的铜。MFC加入淀粉基质后,淀粉的溶解度从55.2% %降低到36.4% %,真密度从1.466增加到1.525 g/cm3,表面积随着MFC含量的增加而减少(从4.010增加到1.814 m2/g)。MFC提出下列金属亲和力秩序:Cu2 + > Mn3 + > Ni2 + > Zn2 + > Cd2 + > Cr6 +。吸附实验表明,随着MFC含量的增加,Cu2+的去除率提高,淀粉/MFC-5 %水凝胶的最大去除率为52.4 %,吸附量为0.258 mmol/g。Langmuir等温线与平衡数据拟合最佳(R2 = 0.998),Dubinin-Radushkevich分析表明,平衡数据由物理吸附(E = 2.42 kJ/mol)向化学吸附(E = 8.11 kJ/mol)转变。动力学平衡时间在480 ~ 780 min之间,拟二阶模型描述最佳。水凝胶的重复使用达到了四个吸附/解吸循环。Cu2+吸附的机理包括与材料上官能团的相互作用和阳离子交换。这些结果证实了淀粉/MFC水凝胶是一种有前途的、低成本的、可生物降解的材料,可以有效地去除污染水中的金属离子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信