Machine learning-assisted X-ray absorption analysis of bimetallic catalysts.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuting Xiang, Marc R Knecht, Anatoly Frenkel
{"title":"Machine learning-assisted X-ray absorption analysis of bimetallic catalysts.","authors":"Shuting Xiang, Marc R Knecht, Anatoly Frenkel","doi":"10.1039/d5mh00387c","DOIUrl":null,"url":null,"abstract":"<p><p>Bimetallic nanoparticles have attracted increasing scientific and technological interest as modules for creating nanoscale materials with unique magnetic, electronic, and chemical properties. The properties of bimetallic NPs are functions of composition, size, shape, stoichiometry, and possibly internal structure (alloy or core-shell-like). Bimetallic nanoparticles have superior properties for catalytic applications. However, it is challenging to understand and control the size, shape, composition, and activity of these nanomaterials. The internal atomic structure of these materials needs to be precisely characterized to understand the structure-function relationship. X-ray absorption fine structure (XAFS) spectroscopy has been a premier tool for analyzing the compositional and structural motifs in bimetallic nanoparticles for several decades. In this review, we discuss the limitations in the ability of XAFS to detect catalytically relevant surface species and focus on recent developments in machine learning-assisted XAFS analysis aimed at overcoming these limitations.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00387c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bimetallic nanoparticles have attracted increasing scientific and technological interest as modules for creating nanoscale materials with unique magnetic, electronic, and chemical properties. The properties of bimetallic NPs are functions of composition, size, shape, stoichiometry, and possibly internal structure (alloy or core-shell-like). Bimetallic nanoparticles have superior properties for catalytic applications. However, it is challenging to understand and control the size, shape, composition, and activity of these nanomaterials. The internal atomic structure of these materials needs to be precisely characterized to understand the structure-function relationship. X-ray absorption fine structure (XAFS) spectroscopy has been a premier tool for analyzing the compositional and structural motifs in bimetallic nanoparticles for several decades. In this review, we discuss the limitations in the ability of XAFS to detect catalytically relevant surface species and focus on recent developments in machine learning-assisted XAFS analysis aimed at overcoming these limitations.

机器学习辅助双金属催化剂的x射线吸收分析。
双金属纳米颗粒作为制造具有独特磁性、电子和化学性质的纳米级材料的模块,已经引起了越来越多的科学和技术兴趣。双金属NPs的性质与组成、尺寸、形状、化学计量以及可能的内部结构(合金或核壳状)有关。双金属纳米颗粒具有优异的催化性能。然而,理解和控制这些纳米材料的大小、形状、组成和活性是具有挑战性的。这些材料的内部原子结构需要精确表征,以理解结构-功能关系。几十年来,x射线吸收精细结构(XAFS)光谱一直是分析双金属纳米颗粒成分和结构基序的主要工具。在这篇综述中,我们讨论了XAFS检测催化相关表面物质的能力的局限性,并重点介绍了旨在克服这些局限性的机器学习辅助XAFS分析的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信