Error Correction of Analytical Magnetic Field Expressions With Neural Networks

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
F. Slanovc;M. Stipsitz;H. Sanchis-Alepuz;D. Suess;M. Ortner
{"title":"Error Correction of Analytical Magnetic Field Expressions With Neural Networks","authors":"F. Slanovc;M. Stipsitz;H. Sanchis-Alepuz;D. Suess;M. Ortner","doi":"10.1109/TMAG.2025.3533912","DOIUrl":null,"url":null,"abstract":"Analytical formulas for calculating magnetic fields have been derived in the past for common magnet types, offering microsecond-level computational speed ideal for magnet system modeling. These formulas mostly assume perfect homogeneity of the magnetization, leading to slight deviations from real field values where material interaction plays a role. This article introduces a physics-based neural network (NN) that reduces errors occurring from the self-demagnetization effect by an order of magnitude, maintaining fast computational speed.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 6","pages":"1-4"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10852335/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Analytical formulas for calculating magnetic fields have been derived in the past for common magnet types, offering microsecond-level computational speed ideal for magnet system modeling. These formulas mostly assume perfect homogeneity of the magnetization, leading to slight deviations from real field values where material interaction plays a role. This article introduces a physics-based neural network (NN) that reduces errors occurring from the self-demagnetization effect by an order of magnitude, maintaining fast computational speed.
用神经网络修正解析磁场表达式的误差
计算磁场的解析公式在过去已经为常见的磁体类型推导,提供微秒级的计算速度理想的磁体系统建模。这些公式大多假设磁化强度完全均匀,导致与实际场值略有偏差,其中材料相互作用起作用。本文介绍了一种基于物理的神经网络(NN),该网络将自退磁效应产生的误差降低了一个数量级,保持了快速的计算速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信