Jozsef Palmieri, Paolo Di Lillo, Stefano Chiaverini, Alessandro Marino
{"title":"A comprehensive control architecture for semi-autonomous dual-arm robots in agriculture settings","authors":"Jozsef Palmieri, Paolo Di Lillo, Stefano Chiaverini, Alessandro Marino","doi":"10.1016/j.conengprac.2025.106394","DOIUrl":null,"url":null,"abstract":"<div><div>The adoption of mobile robotic platforms in complex environments, such as agricultural settings, requires these systems to exhibit a flexible yet effective architecture that integrates perception and control. In such scenarios, several tasks need to be accomplished simultaneously, ranging from managing robot limits to performing operational tasks and handling human inputs. The purpose of this paper is to present a comprehensive control architecture for achieving complex tasks such as robotized harvesting in vineyards within the framework of the European project CANOPIES. In detail, a 16-DOF dual-arm mobile robot is employed, controlled via a Hierarchical Quadratic Programming (HQP) approach capable of handling both equality and inequality constraints at various priorities to harvest grape bunches selected by the perception system developed within the project. Furthermore, given the complexity of the scenario and the uncertainty in the perception system, which could potentially lead to collisions with the environment, the handling of interaction forces is necessary. Remarkably, this was achieved using the same HQP framework. This feature is further leveraged to enable semi-autonomous operations, allowing a human operator to assist the robotic counterpart in completing harvesting tasks. Finally, the obtained results are validated through extensive testing conducted first in a laboratory environment to prove individual functionalities, then in a real vineyard, encompassing both autonomous and semi-autonomous grape harvesting operations.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"163 ","pages":"Article 106394"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125001571","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The adoption of mobile robotic platforms in complex environments, such as agricultural settings, requires these systems to exhibit a flexible yet effective architecture that integrates perception and control. In such scenarios, several tasks need to be accomplished simultaneously, ranging from managing robot limits to performing operational tasks and handling human inputs. The purpose of this paper is to present a comprehensive control architecture for achieving complex tasks such as robotized harvesting in vineyards within the framework of the European project CANOPIES. In detail, a 16-DOF dual-arm mobile robot is employed, controlled via a Hierarchical Quadratic Programming (HQP) approach capable of handling both equality and inequality constraints at various priorities to harvest grape bunches selected by the perception system developed within the project. Furthermore, given the complexity of the scenario and the uncertainty in the perception system, which could potentially lead to collisions with the environment, the handling of interaction forces is necessary. Remarkably, this was achieved using the same HQP framework. This feature is further leveraged to enable semi-autonomous operations, allowing a human operator to assist the robotic counterpart in completing harvesting tasks. Finally, the obtained results are validated through extensive testing conducted first in a laboratory environment to prove individual functionalities, then in a real vineyard, encompassing both autonomous and semi-autonomous grape harvesting operations.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.