A comprehensive control architecture for semi-autonomous dual-arm robots in agriculture settings

IF 4.6 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Jozsef Palmieri, Paolo Di Lillo, Stefano Chiaverini, Alessandro Marino
{"title":"A comprehensive control architecture for semi-autonomous dual-arm robots in agriculture settings","authors":"Jozsef Palmieri,&nbsp;Paolo Di Lillo,&nbsp;Stefano Chiaverini,&nbsp;Alessandro Marino","doi":"10.1016/j.conengprac.2025.106394","DOIUrl":null,"url":null,"abstract":"<div><div>The adoption of mobile robotic platforms in complex environments, such as agricultural settings, requires these systems to exhibit a flexible yet effective architecture that integrates perception and control. In such scenarios, several tasks need to be accomplished simultaneously, ranging from managing robot limits to performing operational tasks and handling human inputs. The purpose of this paper is to present a comprehensive control architecture for achieving complex tasks such as robotized harvesting in vineyards within the framework of the European project CANOPIES. In detail, a 16-DOF dual-arm mobile robot is employed, controlled via a Hierarchical Quadratic Programming (HQP) approach capable of handling both equality and inequality constraints at various priorities to harvest grape bunches selected by the perception system developed within the project. Furthermore, given the complexity of the scenario and the uncertainty in the perception system, which could potentially lead to collisions with the environment, the handling of interaction forces is necessary. Remarkably, this was achieved using the same HQP framework. This feature is further leveraged to enable semi-autonomous operations, allowing a human operator to assist the robotic counterpart in completing harvesting tasks. Finally, the obtained results are validated through extensive testing conducted first in a laboratory environment to prove individual functionalities, then in a real vineyard, encompassing both autonomous and semi-autonomous grape harvesting operations.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"163 ","pages":"Article 106394"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125001571","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The adoption of mobile robotic platforms in complex environments, such as agricultural settings, requires these systems to exhibit a flexible yet effective architecture that integrates perception and control. In such scenarios, several tasks need to be accomplished simultaneously, ranging from managing robot limits to performing operational tasks and handling human inputs. The purpose of this paper is to present a comprehensive control architecture for achieving complex tasks such as robotized harvesting in vineyards within the framework of the European project CANOPIES. In detail, a 16-DOF dual-arm mobile robot is employed, controlled via a Hierarchical Quadratic Programming (HQP) approach capable of handling both equality and inequality constraints at various priorities to harvest grape bunches selected by the perception system developed within the project. Furthermore, given the complexity of the scenario and the uncertainty in the perception system, which could potentially lead to collisions with the environment, the handling of interaction forces is necessary. Remarkably, this was achieved using the same HQP framework. This feature is further leveraged to enable semi-autonomous operations, allowing a human operator to assist the robotic counterpart in completing harvesting tasks. Finally, the obtained results are validated through extensive testing conducted first in a laboratory environment to prove individual functionalities, then in a real vineyard, encompassing both autonomous and semi-autonomous grape harvesting operations.
农业半自主双臂机器人的综合控制体系结构
在复杂环境(如农业环境)中采用移动机器人平台,要求这些系统具有灵活而有效的架构,集成了感知和控制。在这种情况下,需要同时完成几个任务,从管理机器人限制到执行操作任务和处理人工输入。本文的目的是提出一个全面的控制架构,以实现复杂的任务,如欧洲项目CANOPIES框架内的葡萄园自动化收获。具体而言,采用16自由度双臂移动机器人,通过层次二次规划(HQP)方法进行控制,该方法能够处理不同优先级的等式和不等式约束,以收获由项目中开发的感知系统选择的葡萄束。此外,考虑到场景的复杂性和感知系统的不确定性,这可能会导致与环境的碰撞,处理相互作用力是必要的。值得注意的是,这是使用相同的HQP框架实现的。这一特性进一步被用于实现半自主操作,允许人工操作员协助机器人完成采收任务。最后,通过首先在实验室环境中进行的广泛测试来验证所获得的结果,以证明个人功能,然后在真实的葡萄园中进行,包括自主和半自主的葡萄收获操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信