{"title":"Global boundedness in a two-dimensional chemotaxis-Navier–Stokes system with double chemical signals and nonlinear diffusion","authors":"Wang Luo, Zhongping Li","doi":"10.1016/j.nonrwa.2025.104415","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the following chemotaxis-Navier–Stokes system with double chemical signals and nonlinear diffusion <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>n</mi><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>∇</mo><mi>n</mi><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mo>∇</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>c</mi><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>n</mi><mi>c</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>v</mi><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>n</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>κ</mi><mrow><mo>(</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mo>)</mo></mrow><mi>u</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mo>∇</mo><mi>P</mi><mo>+</mo><mi>n</mi><mo>∇</mo><mi>Φ</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mo>∇</mo><mi>⋅</mi><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> with no-flux/no-flux/no-flux/no-slip boundary conditions, where <span><math><mrow><mi>χ</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>ξ</mi><mo><</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>κ</mi><mo>∈</mo><mi>R</mi></mrow></math></span> are given constants. <span><math><mi>D</mi></math></span> is a given function satisfying <span><span><span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mtext>for all</mtext><mi>s</mi><mo>≥</mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span>We obtain the boundedness of the classical solution to the initial–boundary value problem of the 2D chemotaxis-Navier–Stokes system if <span><math><mrow><mi>m</mi><mo>></mo><mn>1</mn></mrow></math></span>, which implies that saturation effect can prevent blow-up arising from the chemotaxis-Navier–Stokes system without any smallness condition on the initial mass.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104415"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001014","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the following chemotaxis-Navier–Stokes system with double chemical signals and nonlinear diffusion in a smooth bounded domain with no-flux/no-flux/no-flux/no-slip boundary conditions, where and are given constants. is a given function satisfying We obtain the boundedness of the classical solution to the initial–boundary value problem of the 2D chemotaxis-Navier–Stokes system if , which implies that saturation effect can prevent blow-up arising from the chemotaxis-Navier–Stokes system without any smallness condition on the initial mass.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.