Global boundedness in a two-dimensional chemotaxis-Navier–Stokes system with double chemical signals and nonlinear diffusion

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Wang Luo, Zhongping Li
{"title":"Global boundedness in a two-dimensional chemotaxis-Navier–Stokes system with double chemical signals and nonlinear diffusion","authors":"Wang Luo,&nbsp;Zhongping Li","doi":"10.1016/j.nonrwa.2025.104415","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the following chemotaxis-Navier–Stokes system with double chemical signals and nonlinear diffusion <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>n</mi><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>∇</mo><mi>n</mi><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mo>∇</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>c</mi><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>n</mi><mi>c</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>v</mi><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>n</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>κ</mi><mrow><mo>(</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mo>)</mo></mrow><mi>u</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mo>∇</mo><mi>P</mi><mo>+</mo><mi>n</mi><mo>∇</mo><mi>Φ</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mo>∇</mo><mi>⋅</mi><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> with no-flux/no-flux/no-flux/no-slip boundary conditions, where <span><math><mrow><mi>χ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>ξ</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>κ</mi><mo>∈</mo><mi>R</mi></mrow></math></span> are given constants. <span><math><mi>D</mi></math></span> is a given function satisfying <span><span><span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mtext>for all</mtext><mi>s</mi><mo>≥</mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span>We obtain the boundedness of the classical solution to the initial–boundary value problem of the 2D chemotaxis-Navier–Stokes system if <span><math><mrow><mi>m</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, which implies that saturation effect can prevent blow-up arising from the chemotaxis-Navier–Stokes system without any smallness condition on the initial mass.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104415"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001014","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the following chemotaxis-Navier–Stokes system with double chemical signals and nonlinear diffusion nt+un=(D(n)n)χ(nc)+ξ(nv),xΩ,t>0,ct+uc=Δcnc,xΩ,t>0,vt+uv=Δvv+n,xΩ,t>0,ut+κ(u)u=Δu+P+nΦ,xΩ,t>0,u=0,xΩ,t>0in a smooth bounded domain ΩR2 with no-flux/no-flux/no-flux/no-slip boundary conditions, where χ>0,ξ<0 and κR are given constants. D is a given function satisfying D(s)(s+1)m1for alls0.We obtain the boundedness of the classical solution to the initial–boundary value problem of the 2D chemotaxis-Navier–Stokes system if m>1, which implies that saturation effect can prevent blow-up arising from the chemotaxis-Navier–Stokes system without any smallness condition on the initial mass.
具有双化学信号和非线性扩散的二维趋化- navier - stokes系统的全局有界性
探讨以下chemotaxis-Navier-Stokes系统双重化学信号和非线性扩散nt + u⋅∇n =∇⋅(D n (n)∇)−χ∇⋅(n∇c) +ξ∇⋅(n∇v), x∈Ω,t> 0, ct + u⋅∇c = cΔ−数控,x∈Ω,t> 0, vt + u⋅∇v =Δ−v + n, x∈Ω,t> 0, ut +κ(u⋅∇)u = u +∇P + n∇ΔΦ,x∈Ω,t> 0,∇⋅u = 0, x∈Ω,t> 0顺利有限域Ω⊂R2无需通量/无需通量/无需通量/无滑动边界条件,在χ祝辞0,ξ& lt; 0和κ∈R给出常数。D是一个给定的函数,满足D(s)≥(s+1)m−1,对于所有≥0。我们得到了二维趋化- navier - stokes系统初边值问题经典解的有界性,这意味着饱和效应可以防止趋化- navier - stokes系统产生的爆炸,而对初始质量没有任何小条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信