Xiaoxue Wang , Jinzhuang Xu , Chenglong Zhang , Moritz Wildgruber , Wenjing Jiang , Lili Wang , Xiaopeng Ma
{"title":"Residual-conditioned sparse transformer for photoacoustic image artifact reduction","authors":"Xiaoxue Wang , Jinzhuang Xu , Chenglong Zhang , Moritz Wildgruber , Wenjing Jiang , Lili Wang , Xiaopeng Ma","doi":"10.1016/j.pacs.2025.100731","DOIUrl":null,"url":null,"abstract":"<div><div>Photoacoustic tomography (PAT) combines the high spatial resolution of ultrasound imaging with the high contrast of optical imaging. To reduce acquisition time and lower the cost of photoacoustic imaging, sparse sampling strategy is often employed. Conventional reconstruction methods often produce artifacts when dealing with sparse data, affecting image quality and diagnostic accuracy. This paper proposes a Residual-Conditioned Sparse Transformer (RCST) network for reducing artifacts in photoacoustic images, aiming to enhance image quality under sparse sampling. By introducing residual prior information, our algorithm encodes and embeds it into local enhancement and detail recovery stages. We utilize sparse transformer blocks to identify and reduce artifacts while preserving key structures and details of the images. Experiments on multiple simulated and experimental datasets demonstrate that our method significantly suppresses artifacts and improves image quality, offering new possibilities for the application of photoacoustic imaging in biomedical research and clinical diagnostics.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"44 ","pages":"Article 100731"},"PeriodicalIF":7.1000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000540","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photoacoustic tomography (PAT) combines the high spatial resolution of ultrasound imaging with the high contrast of optical imaging. To reduce acquisition time and lower the cost of photoacoustic imaging, sparse sampling strategy is often employed. Conventional reconstruction methods often produce artifacts when dealing with sparse data, affecting image quality and diagnostic accuracy. This paper proposes a Residual-Conditioned Sparse Transformer (RCST) network for reducing artifacts in photoacoustic images, aiming to enhance image quality under sparse sampling. By introducing residual prior information, our algorithm encodes and embeds it into local enhancement and detail recovery stages. We utilize sparse transformer blocks to identify and reduce artifacts while preserving key structures and details of the images. Experiments on multiple simulated and experimental datasets demonstrate that our method significantly suppresses artifacts and improves image quality, offering new possibilities for the application of photoacoustic imaging in biomedical research and clinical diagnostics.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.