{"title":"Recent progress and prospects of inverted singlet-triplet energy gap (INVEST) materials in OLEDs","authors":"Makhvela Anwer, Shiwei Yin","doi":"10.1016/j.orgel.2025.107282","DOIUrl":null,"url":null,"abstract":"<div><div>The complete harvesting of singlet and triplet excitons offers a pathway to surpass the spin-statistics limit of conventional fluorescent materials. This opens the door to highly efficient molecular light-emission mechanisms such as thermally activated delayed fluorescence (TADF). This TADF mechanism is aided by low singlet-triplet energy gaps (ΔE<sub>ST</sub>), which are usually positive (following Hund's rule). Recent research has explored the violation of Hund's rule by inverting the excited states. Consequently, thermodynamically advantageous down conversion by the negative ΔE<sub>ST</sub> eliminates the need for thermal activation and permits more effective reverse intersystem crossing (RISC), which enables solving problems of short lifetime and fast efficiency roll off of organic light emitting diode (OLED) devices. The potential uses of molecules that violate Hund's law have garnered considerable interest in OLEDs, bioimaging, and photocatalysis. Therefore, the success of INVEST materials holds the potential to enable the next generation of OLEDs. This mini-review focuses on significant progress in INVEST materials (molecular design and photophysical properties). Furthermore, the outlook and prospects for future developments in INVEST materials are described.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"144 ","pages":"Article 107282"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925000886","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The complete harvesting of singlet and triplet excitons offers a pathway to surpass the spin-statistics limit of conventional fluorescent materials. This opens the door to highly efficient molecular light-emission mechanisms such as thermally activated delayed fluorescence (TADF). This TADF mechanism is aided by low singlet-triplet energy gaps (ΔEST), which are usually positive (following Hund's rule). Recent research has explored the violation of Hund's rule by inverting the excited states. Consequently, thermodynamically advantageous down conversion by the negative ΔEST eliminates the need for thermal activation and permits more effective reverse intersystem crossing (RISC), which enables solving problems of short lifetime and fast efficiency roll off of organic light emitting diode (OLED) devices. The potential uses of molecules that violate Hund's law have garnered considerable interest in OLEDs, bioimaging, and photocatalysis. Therefore, the success of INVEST materials holds the potential to enable the next generation of OLEDs. This mini-review focuses on significant progress in INVEST materials (molecular design and photophysical properties). Furthermore, the outlook and prospects for future developments in INVEST materials are described.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.