Annalena Erlacher , Adrian Villalba Weinberg , Christian L. Lengauer , Andreas Börger
{"title":"Mineralogical and microstructural changes in fused cast Ti-stabilized alumina-zirconia eutectic ceramics at elevated temperatures","authors":"Annalena Erlacher , Adrian Villalba Weinberg , Christian L. Lengauer , Andreas Börger","doi":"10.1016/j.oceram.2025.100798","DOIUrl":null,"url":null,"abstract":"<div><div>Ti-stabilized alumina-zirconia eutectic ceramics produced by fusion-casting are characterized to investigate microstructural mechanisms at elevated temperatures and to explain the self-sharpening effect. Scanning electron microscopy (SEM) images show fine-grained lamellar eutectic microstructures with well-defined domains. After thermal annealing at 800 °C, distinct cracks formed along the domain boundaries. Thermal analyses and powder X-ray diffraction (pXRD), using Rietveld evaluation, confirmed that the cracks are triggered by the phase transformation from meta-stable tetragonal to monoclinic ZrO<sub>2</sub>, causing a volume increase of up to 13.4 %. This indicates a decrease in the stabilizing effect of Ti in the meta-stable tetragonal ZrO<sub>2</sub> starting from 669 °C, and subsequently triggering the phase transformation. Additionally, structural analysis of pXRD data reveals internal stresses within the crystal lattice, showing expansion of tetragonal ZrO<sub>2</sub> along the <em>c</em>-axis and distortions in the basal plane in both tetragonal and monoclinic ZrO<sub>2</sub>.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"22 ","pages":"Article 100798"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539525000653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ti-stabilized alumina-zirconia eutectic ceramics produced by fusion-casting are characterized to investigate microstructural mechanisms at elevated temperatures and to explain the self-sharpening effect. Scanning electron microscopy (SEM) images show fine-grained lamellar eutectic microstructures with well-defined domains. After thermal annealing at 800 °C, distinct cracks formed along the domain boundaries. Thermal analyses and powder X-ray diffraction (pXRD), using Rietveld evaluation, confirmed that the cracks are triggered by the phase transformation from meta-stable tetragonal to monoclinic ZrO2, causing a volume increase of up to 13.4 %. This indicates a decrease in the stabilizing effect of Ti in the meta-stable tetragonal ZrO2 starting from 669 °C, and subsequently triggering the phase transformation. Additionally, structural analysis of pXRD data reveals internal stresses within the crystal lattice, showing expansion of tetragonal ZrO2 along the c-axis and distortions in the basal plane in both tetragonal and monoclinic ZrO2.