Fernando Bravo-González , Mario Eduardo Acosta-Hernández , Hiram Tendilla-Beltrán , Gonzalo Flores , Fabio García-García
{"title":"Effect of chronic sleep restriction on ethanol preference and cortical structural plasticity","authors":"Fernando Bravo-González , Mario Eduardo Acosta-Hernández , Hiram Tendilla-Beltrán , Gonzalo Flores , Fabio García-García","doi":"10.1016/j.nbscr.2025.100126","DOIUrl":null,"url":null,"abstract":"<div><div>Sleep loss is associated with a potential risk of using drugs such as cocaine, methamphetamines, and alcohol. Recently, our group showed that chronic sleep restriction (CSR) for 7 days/4 h induces a significant increase in ethanol intake and delta FosB immunoreactivity in the rat's prefrontal cortex. However, whether CSR promotes changes in structural plasticity that explain ethanol consumption is unknown. Therefore, the present study aimed to determine if CSR induces changes in the dendritic length, branching of the dendritic tree, and spine morphology of the pyramidal neurons from the prelimbic cortex and whether these structural changes are associated with ethanol consumption. For this purpose, adult male Wistar rats were divided into four experimental groups: control, CSR for 7 days/4 h daily, CSR + ethanol exposure, and ethanol exposure. The two-bottle free-choice paradigm was used to measure ethanol intake, and the gentle handling method was used for CSR. At the end of the experiment, the rats were euthanized, and their brains were dissected and processed by Golgi-Cox staining. Sholl analysis was used to characterize structural plasticity. Results show that CSR induced an increase in the ethanol index preference. In addition, ethanol intake and ethanol + CSR increased the total dendritic length, dendritic tree branching, and mushroom spines in prelimbic cortex neurons. In conclusion, changes in structural plasticity associated with CSR and continuous access to ethanol may translate into neuroadaptive changes that favor drug preference and subsequently reinforce addictive behavior.</div></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"18 ","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245199442500015X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Sleep loss is associated with a potential risk of using drugs such as cocaine, methamphetamines, and alcohol. Recently, our group showed that chronic sleep restriction (CSR) for 7 days/4 h induces a significant increase in ethanol intake and delta FosB immunoreactivity in the rat's prefrontal cortex. However, whether CSR promotes changes in structural plasticity that explain ethanol consumption is unknown. Therefore, the present study aimed to determine if CSR induces changes in the dendritic length, branching of the dendritic tree, and spine morphology of the pyramidal neurons from the prelimbic cortex and whether these structural changes are associated with ethanol consumption. For this purpose, adult male Wistar rats were divided into four experimental groups: control, CSR for 7 days/4 h daily, CSR + ethanol exposure, and ethanol exposure. The two-bottle free-choice paradigm was used to measure ethanol intake, and the gentle handling method was used for CSR. At the end of the experiment, the rats were euthanized, and their brains were dissected and processed by Golgi-Cox staining. Sholl analysis was used to characterize structural plasticity. Results show that CSR induced an increase in the ethanol index preference. In addition, ethanol intake and ethanol + CSR increased the total dendritic length, dendritic tree branching, and mushroom spines in prelimbic cortex neurons. In conclusion, changes in structural plasticity associated with CSR and continuous access to ethanol may translate into neuroadaptive changes that favor drug preference and subsequently reinforce addictive behavior.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.