Finite element analysis on generalized piezothermoelastic interactions in an unbounded piezoelectric medium containing a spherical cavity

IF 4.3 3区 工程技术 Q1 MECHANICS
Ibrahim Abbas, Areej Almuneef, Zuhur Alqahtani
{"title":"Finite element analysis on generalized piezothermoelastic interactions in an unbounded piezoelectric medium containing a spherical cavity","authors":"Ibrahim Abbas, Areej Almuneef, Zuhur Alqahtani","doi":"10.1515/jnet-2025-0034","DOIUrl":null,"url":null,"abstract":"This paper addresses the theoretical analysis of a piezothermoelastic problem involving an unbounded thermopiezoelectric medium with a spherical cavity subjected to pulse heating flux. The generalized piezo-thermo-elastic formulations of Lord and Shulman with thermal relaxation effects are used in this work. Unlike previous studies, which often consider simplified boundary conditions or steady-state thermal loading, our work incorporates generalized piezo-thermo-elastic formulations based on the Lord and Shulman model, accounting for thermal relaxation effects under dynamic thermal loading conditions. The numerical solution of the governing equations is done using the finite element approach, and temporal evolution is solved using the implicit scheme. New numerical results provide insight into the dynamic behavior of the piezoelectric medium subjected to thermal conditions. Thermal relaxation time and pulse heating flux are analyzed in their influence on the coupled thermal, mechanical and electrical fields and, thus, on the response of the system.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"45 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2025-0034","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the theoretical analysis of a piezothermoelastic problem involving an unbounded thermopiezoelectric medium with a spherical cavity subjected to pulse heating flux. The generalized piezo-thermo-elastic formulations of Lord and Shulman with thermal relaxation effects are used in this work. Unlike previous studies, which often consider simplified boundary conditions or steady-state thermal loading, our work incorporates generalized piezo-thermo-elastic formulations based on the Lord and Shulman model, accounting for thermal relaxation effects under dynamic thermal loading conditions. The numerical solution of the governing equations is done using the finite element approach, and temporal evolution is solved using the implicit scheme. New numerical results provide insight into the dynamic behavior of the piezoelectric medium subjected to thermal conditions. Thermal relaxation time and pulse heating flux are analyzed in their influence on the coupled thermal, mechanical and electrical fields and, thus, on the response of the system.
含球腔的无界压电介质中广义压热弹性相互作用的有限元分析
本文从理论角度分析了具有球面空腔的无界热电介质在脉冲热通量作用下的压热弹性问题。本文采用了具有热松弛效应的Lord和Shulman广义压电热弹性公式。与以往的研究不同,这些研究通常考虑简化的边界条件或稳态热载荷,我们的工作结合了基于Lord和Shulman模型的广义压电热弹性公式,考虑了动态热载荷条件下的热松弛效应。控制方程采用有限元法进行数值求解,时间演化采用隐式格式求解。新的数值结果提供了深入了解压电介质在热条件下的动态行为。分析了热松弛时间和脉冲热通量对耦合热、机械和电场的影响,进而对系统响应的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
18.20%
发文量
31
审稿时长
1 months
期刊介绍: The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena. Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level. The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信