Optical Addressability of the Arylnitrene Spin Triplet

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Gaetano Ricci, Claire Tonnelé, David Casanova
{"title":"Optical Addressability of the Arylnitrene Spin Triplet","authors":"Gaetano Ricci, Claire Tonnelé, David Casanova","doi":"10.1021/acs.jpclett.5c01024","DOIUrl":null,"url":null,"abstract":"Optically addressable spin systems are key to quantum technologies, but solid-state defects such as nitrogen-vacancy centers face challenges in scalability and tunability. Here, we computationally explore arylnitrenes as molecular alternatives. High-accuracy calculations confirm a robust triplet ground state with spin-selective intersystem crossing and spin-vibronic-mediated reverse intersystem crossing, enabling efficient spin-state initialization. While pristine arylnitrene has weak optical transitions, targeted chemical modifications significantly enhance its emission capabilities without disrupting the symmetry rules governing the spin-state preparation mechanism. Combined with recent advances in nitrene stabilization and positioning, these results establish arylnitrenes as promising candidates for molecular spin qubits.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"1 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c01024","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Optically addressable spin systems are key to quantum technologies, but solid-state defects such as nitrogen-vacancy centers face challenges in scalability and tunability. Here, we computationally explore arylnitrenes as molecular alternatives. High-accuracy calculations confirm a robust triplet ground state with spin-selective intersystem crossing and spin-vibronic-mediated reverse intersystem crossing, enabling efficient spin-state initialization. While pristine arylnitrene has weak optical transitions, targeted chemical modifications significantly enhance its emission capabilities without disrupting the symmetry rules governing the spin-state preparation mechanism. Combined with recent advances in nitrene stabilization and positioning, these results establish arylnitrenes as promising candidates for molecular spin qubits.

Abstract Image

芳基硝基自旋三重态的光学寻址性
光学可寻址自旋系统是量子技术的关键,但氮空位中心等固态缺陷在可扩展性和可调性方面面临挑战。在这里,我们计算探索芳基亚硝基烯作为分子替代品。高精度计算证实了具有自旋选择性系统间交叉和自旋振动介导的反向系统间交叉的鲁棒三重态基态,实现了有效的自旋态初始化。虽然原始芳基硝基烯具有弱的光学跃迁,但有针对性的化学修饰可以显著提高其发射能力,而不会破坏控制自旋态制备机制的对称规则。结合亚硝基稳定和定位的最新进展,这些结果确定芳基亚硝基是分子自旋量子比特的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信