Interface-optimized piezoelectric tactile sensor with enhanced sensitivity for arterial pulse wave-enabled blood pressure monitoring

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ming Li , Kaiyuan Lai , Dantong Wang , Yifan Li , Yurong Liu , Ruohe Yao , Xinzhun Chen , Kuiwei Geng
{"title":"Interface-optimized piezoelectric tactile sensor with enhanced sensitivity for arterial pulse wave-enabled blood pressure monitoring","authors":"Ming Li ,&nbsp;Kaiyuan Lai ,&nbsp;Dantong Wang ,&nbsp;Yifan Li ,&nbsp;Yurong Liu ,&nbsp;Ruohe Yao ,&nbsp;Xinzhun Chen ,&nbsp;Kuiwei Geng","doi":"10.1016/j.apsusc.2025.163690","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, underscoring the need for continuous, non-invasive monitoring technologies. Here, we present a wearable piezoelectric tactile sensor featuring a mechanically and electrically optimized interface. The device integrates a composite electrode composed of silver nanowires (AgNWs), Lithium Chloride (LiCl)-incorporated cross-linked polyvinyl alcohol (C-PVA(LiCl)), and Polydimethylsiloxane (PDMS), paired with an Mg-doped ZnO/PDMS piezoelectric layer. The C-PVA(LiCl) interlayer enhances stress transfer and charge collection efficiency, as verified by conductive AFM, impedance spectroscopy, and finite element analysis. The sensor achieves a 329 % improvement in sensitivity (308.5  mV·kPa<sup>−1</sup>) over unoptimized designs. It enables accurate acquisition of pulse waveforms and extraction of cardiovascular parameters such as heart rate, pulse period, and pulse wave velocity. Combined with machine learning-based analysis, this approach enables cuff-free blood pressure prediction. This work offers a rational interface design strategy for high-performance sensors and contributes to the development of next-generation wearable platforms for cardiovascular health assessment.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"708 ","pages":"Article 163690"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225014059","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, underscoring the need for continuous, non-invasive monitoring technologies. Here, we present a wearable piezoelectric tactile sensor featuring a mechanically and electrically optimized interface. The device integrates a composite electrode composed of silver nanowires (AgNWs), Lithium Chloride (LiCl)-incorporated cross-linked polyvinyl alcohol (C-PVA(LiCl)), and Polydimethylsiloxane (PDMS), paired with an Mg-doped ZnO/PDMS piezoelectric layer. The C-PVA(LiCl) interlayer enhances stress transfer and charge collection efficiency, as verified by conductive AFM, impedance spectroscopy, and finite element analysis. The sensor achieves a 329 % improvement in sensitivity (308.5  mV·kPa−1) over unoptimized designs. It enables accurate acquisition of pulse waveforms and extraction of cardiovascular parameters such as heart rate, pulse period, and pulse wave velocity. Combined with machine learning-based analysis, this approach enables cuff-free blood pressure prediction. This work offers a rational interface design strategy for high-performance sensors and contributes to the development of next-generation wearable platforms for cardiovascular health assessment.

Abstract Image

界面优化的压电触觉传感器,增强了动脉脉搏波血压监测的灵敏度
心血管疾病(cvd)仍然是世界范围内死亡的主要原因,这突出了对持续、非侵入性监测技术的需求。在这里,我们提出了一种具有机械和电气优化接口的可穿戴压电触觉传感器。该器件集成了由银纳米线(AgNWs)、氯化锂(LiCl)掺杂的交联聚乙烯醇(C-PVA(LiCl))和聚二甲基硅氧烷(PDMS)组成的复合电极,并与mg掺杂的ZnO/PDMS压电层搭配。通过导电AFM、阻抗谱和有限元分析证实,C-PVA(LiCl)夹层增强了应力传递和电荷收集效率。与未优化设计相比,该传感器的灵敏度提高了329 % (308.5 mV·kPa−1)。它能够准确地采集脉冲波形,并提取心血管参数,如心率、脉搏周期和脉搏波速度。结合基于机器学习的分析,这种方法可以实现无袖带血压预测。这项工作为高性能传感器提供了合理的接口设计策略,有助于开发下一代可穿戴心血管健康评估平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信