{"title":"MXene-Based Cartilage-Adhesive Microspheres for Photothermal-Controlled Hydrophobic Drug Release and Mesenchymal Stem Cell Delivery in Osteoarthritis","authors":"Fan Chen, Wenzhe Wang, Hengxin Zhao, Zian Zhang, Nanyu Pang, Yijie Tang, Tian Wang, Chang Liu, Zhenchao Huang, Feiyu Mou, Chaoqun Yu, Haining Zhang","doi":"10.1021/acsnano.4c16918","DOIUrl":null,"url":null,"abstract":"Intra-articular drug injection is an effective treatment for osteoarthritis (OA). However, the rapid clearance of drugs from the joint cavity results in low drug utilization and suboptimal therapeutic outcomes. This study describes MXene-based cartilage-adhesive microspheres for photothermal-controlled hydrophobic drug release and bone marrow mesenchymal stem cell (BMSC) delivery. Nano cationic amylose (NCA) was obtained by modifying amylose with glycidyltrimethylammonium chloride (GTAC), and hydrophobic drug Kartogenin (KGN) was encapsulated in the hydrophobic helical cavity of NCA through ultrasonic treatment, resulting in nano cationic amylose@KGN complexes (NCA@KGN). HAMA/MXene-NCA@KGN (H/M-NCA@KGN) microspheres were prepared using a microfluidic device. These microspheres exhibited excellent biocompatibility, effectively adhered to the cartilage surface, and carried BMSCs. H/M-NCA@KGN microspheres demonstrated photothermal-controlled release of the hydrophobic drug KGN. Notably, KGN promoted the differentiation of BMSCs into chondrocytes, thereby improving the loss of extracellular matrix in joint cartilage. Additionally, appropriate thermal stimulation induced the expression of heat shock protein 70 (HSP70) in OA chondrocytes, providing a protective effect and delaying the progression of OA. H/M-NCA@KGN microspheres enable controlled hydrophobic drug release and stem cell delivery for potential OA treatment applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"4 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16918","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Intra-articular drug injection is an effective treatment for osteoarthritis (OA). However, the rapid clearance of drugs from the joint cavity results in low drug utilization and suboptimal therapeutic outcomes. This study describes MXene-based cartilage-adhesive microspheres for photothermal-controlled hydrophobic drug release and bone marrow mesenchymal stem cell (BMSC) delivery. Nano cationic amylose (NCA) was obtained by modifying amylose with glycidyltrimethylammonium chloride (GTAC), and hydrophobic drug Kartogenin (KGN) was encapsulated in the hydrophobic helical cavity of NCA through ultrasonic treatment, resulting in nano cationic amylose@KGN complexes (NCA@KGN). HAMA/MXene-NCA@KGN (H/M-NCA@KGN) microspheres were prepared using a microfluidic device. These microspheres exhibited excellent biocompatibility, effectively adhered to the cartilage surface, and carried BMSCs. H/M-NCA@KGN microspheres demonstrated photothermal-controlled release of the hydrophobic drug KGN. Notably, KGN promoted the differentiation of BMSCs into chondrocytes, thereby improving the loss of extracellular matrix in joint cartilage. Additionally, appropriate thermal stimulation induced the expression of heat shock protein 70 (HSP70) in OA chondrocytes, providing a protective effect and delaying the progression of OA. H/M-NCA@KGN microspheres enable controlled hydrophobic drug release and stem cell delivery for potential OA treatment applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.