Cryogenic microwave link for quantum local area networks

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
W. K. Yam, M. Renger, S. Gandorfer, F. Fesquet, M. Handschuh, K. E. Honasoge, F. Kronowetter, Y. Nojiri, M. Partanen, M. Pfeiffer, H. van der Vliet, A. J. Matthews, J. Govenius, R. N. Jabdaraghi, M. Prunnila, A. Marx, F. Deppe, R. Gross, K. G. Fedorov
{"title":"Cryogenic microwave link for quantum local area networks","authors":"W. K. Yam, M. Renger, S. Gandorfer, F. Fesquet, M. Handschuh, K. E. Honasoge, F. Kronowetter, Y. Nojiri, M. Partanen, M. Pfeiffer, H. van der Vliet, A. J. Matthews, J. Govenius, R. N. Jabdaraghi, M. Prunnila, A. Marx, F. Deppe, R. Gross, K. G. Fedorov","doi":"10.1038/s41534-025-01046-5","DOIUrl":null,"url":null,"abstract":"<p>Scalable quantum information processing with superconducting circuits is expected to advance from individual processors located in single dilution refrigerators to more powerful distributed quantum computing systems. The realization of hardware platforms for quantum local area networks (QLANs) compatible with superconducting technology is of high importance in order to achieve a practical quantum advantage. Here, we present a fundamental prototype platform for a microwave QLAN based on a cryogenic link connecting two separate dilution cryostats over a distance of 6.6 m with a base temperature of 52 mK in the center. Superconducting microwave coaxial cables are employed to form a quantum communication channel between the distributed network nodes. We demonstrate the continuous-variable entanglement distribution between the remote dilution refrigerators in the form of two-mode squeezed microwave states, reaching squeezing of 2.10 ± 0.02 dB and negativity of 0.501 ± 0.011. Furthermore, we show that quantum entanglement is preserved at channel center temperatures up to 1 K, paving the way towards microwave quantum communication at elevated temperatures. Consequently, such a QLAN system can form the backbone for future distributed quantum computing with superconducting circuits.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"37 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01046-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Scalable quantum information processing with superconducting circuits is expected to advance from individual processors located in single dilution refrigerators to more powerful distributed quantum computing systems. The realization of hardware platforms for quantum local area networks (QLANs) compatible with superconducting technology is of high importance in order to achieve a practical quantum advantage. Here, we present a fundamental prototype platform for a microwave QLAN based on a cryogenic link connecting two separate dilution cryostats over a distance of 6.6 m with a base temperature of 52 mK in the center. Superconducting microwave coaxial cables are employed to form a quantum communication channel between the distributed network nodes. We demonstrate the continuous-variable entanglement distribution between the remote dilution refrigerators in the form of two-mode squeezed microwave states, reaching squeezing of 2.10 ± 0.02 dB and negativity of 0.501 ± 0.011. Furthermore, we show that quantum entanglement is preserved at channel center temperatures up to 1 K, paving the way towards microwave quantum communication at elevated temperatures. Consequently, such a QLAN system can form the backbone for future distributed quantum computing with superconducting circuits.

Abstract Image

量子局域网络低温微波链路
利用超导电路的可扩展量子信息处理有望从位于单个稀释冰箱中的单个处理器发展到更强大的分布式量子计算系统。实现与超导技术兼容的量子局域网硬件平台对于实现量子优势具有重要意义。在这里,我们提出了一个基于低温链路的微波QLAN的基本原型平台,该低温链路将两个独立的稀释低温恒温器连接在6.6 m的距离上,中心的基础温度为52 mK。采用超导微波同轴电缆在分布式网络节点之间形成量子通信通道。我们证明了远程稀释冰箱之间的连续变量纠缠分布以双模压缩微波态的形式出现,压缩达到2.10±0.02 dB,负性为0.501±0.011。此外,我们证明了量子纠缠在高达1k的通道中心温度下保持不变,为高温下的微波量子通信铺平了道路。因此,这种QLAN系统可以构成未来超导电路分布式量子计算的骨干。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信