Qianying Shi , Vaidehi Menon , Liang Qi , John Allison
{"title":"Experimental characterization and atomistic simulation of grain boundary segregation in Mg-Y alloys","authors":"Qianying Shi , Vaidehi Menon , Liang Qi , John Allison","doi":"10.1016/j.jma.2025.04.030","DOIUrl":null,"url":null,"abstract":"<div><div>As a rare earth solute element in Mg alloys, Y has the beneficial effects of increasing both the strength and the ductility as well as weakening the crystallographic texture. To achieve a more fundamental understanding on how Y addition affects the microstructural evolution and mechanical properties, the Y segregation behavior at grain boundaries was investigated in Mg-1wt.%Y and Mg-7wt.%Y alloys at different conditions. The segregation intensity and its dependence on the grain boundary misorientation angle were experimentally characterized and computationally predicted. Strong segregation at grain boundaries was observed in both low and high Y-containing alloys. Y segregation was found to remain in alloy Mg-7Y after high-temperature annealing heat treatment at 540 °C. No direct correlation between the Y segregation intensity and the grain boundary misorientation angle could be established based on either the experimental characterization or the atomistic simulation with a spectral model. We thus conclude that grain boundary segregation of Y is independent of grain boundary misorientation angle.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 6","pages":"Pages 2509-2521"},"PeriodicalIF":13.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956725001604","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
As a rare earth solute element in Mg alloys, Y has the beneficial effects of increasing both the strength and the ductility as well as weakening the crystallographic texture. To achieve a more fundamental understanding on how Y addition affects the microstructural evolution and mechanical properties, the Y segregation behavior at grain boundaries was investigated in Mg-1wt.%Y and Mg-7wt.%Y alloys at different conditions. The segregation intensity and its dependence on the grain boundary misorientation angle were experimentally characterized and computationally predicted. Strong segregation at grain boundaries was observed in both low and high Y-containing alloys. Y segregation was found to remain in alloy Mg-7Y after high-temperature annealing heat treatment at 540 °C. No direct correlation between the Y segregation intensity and the grain boundary misorientation angle could be established based on either the experimental characterization or the atomistic simulation with a spectral model. We thus conclude that grain boundary segregation of Y is independent of grain boundary misorientation angle.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.