Yudan Chen, Yuanhua Sun, Sicheng Li, Xiaokang Liu, Wei Zhang, Qiquan Luo, Dong Liu, Tao Ding, Tao Yao
{"title":"Management of Platinum Electronic States through Metal Host-Guest Interactions for Enhanced Oxygen Reduction.","authors":"Yudan Chen, Yuanhua Sun, Sicheng Li, Xiaokang Liu, Wei Zhang, Qiquan Luo, Dong Liu, Tao Ding, Tao Yao","doi":"10.1021/prechem.4c00073","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling the electronic states of Pt-based catalysts holds great promise for enhancing the intrinsic activity of the oxygen reduction reaction (ORR). Herein, inspired by first-principles simulations, we propose a strategy using metal host-guest interactions to tune Pt 5d electronic characteristics to optimize the adsorption strength of the key *OH intermediate. The hybrid electrocatalyst of Pt nanoparticles on a single-atom Co-N-C support (Pt@Co<sub>L</sub> SAs) exhibits a half-wave potential of 0.92 V and a mass activity of 3.2 A·mg<sub>Pt</sub> <sup>-1</sup> at 0.9 V in 0.1 M HClO<sub>4</sub>, which is a 20-fold enhancement compared with commercial Pt/C. Impressively, the Pt loading in the catalyst is as low as 1.70 wt %, which represents the lowest value reported in the relevant literature on Pt-based acidic ORR catalysts. Comprehensive spectroscopy investigations and theoretical simulations revealed that the precise regulatory effect of Co in various dispersion states effectively weakens the intermediate adsorption and reduces the energy barrier for the water decomposition step. Our finding provides valuable insights for the development of advanced ultralow-Pt ORR catalysts via the integration engineering of multiple metal sites.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 5","pages":"279-288"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/prechem.4c00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/26 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling the electronic states of Pt-based catalysts holds great promise for enhancing the intrinsic activity of the oxygen reduction reaction (ORR). Herein, inspired by first-principles simulations, we propose a strategy using metal host-guest interactions to tune Pt 5d electronic characteristics to optimize the adsorption strength of the key *OH intermediate. The hybrid electrocatalyst of Pt nanoparticles on a single-atom Co-N-C support (Pt@CoL SAs) exhibits a half-wave potential of 0.92 V and a mass activity of 3.2 A·mgPt-1 at 0.9 V in 0.1 M HClO4, which is a 20-fold enhancement compared with commercial Pt/C. Impressively, the Pt loading in the catalyst is as low as 1.70 wt %, which represents the lowest value reported in the relevant literature on Pt-based acidic ORR catalysts. Comprehensive spectroscopy investigations and theoretical simulations revealed that the precise regulatory effect of Co in various dispersion states effectively weakens the intermediate adsorption and reduces the energy barrier for the water decomposition step. Our finding provides valuable insights for the development of advanced ultralow-Pt ORR catalysts via the integration engineering of multiple metal sites.
期刊介绍:
Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.