Synthesis of Alternatively-Twisted Nanographenes by Semi-Deprotection-Induced Cyclization.

IF 6.2
Precision Chemistry Pub Date : 2025-03-13 eCollection Date: 2025-05-26 DOI:10.1021/prechem.5c00001
Zhenxun Xu, Suriguga Meng, Zhiyu Zhang, Shuqin Han, Fenghua Bai, Yanping Dong, Yoshifumi Hashikawa, Chaolumen
{"title":"Synthesis of Alternatively-Twisted Nanographenes by Semi-Deprotection-Induced Cyclization.","authors":"Zhenxun Xu, Suriguga Meng, Zhiyu Zhang, Shuqin Han, Fenghua Bai, Yanping Dong, Yoshifumi Hashikawa, Chaolumen","doi":"10.1021/prechem.5c00001","DOIUrl":null,"url":null,"abstract":"<p><p>Twisted nanographenes (NGs) are currently attracting a lot of attention owing to their geometrical and electronic structures that differ substantively from conventional planar and nonplanar NGs, while the strategic synthesis of twisted NGs is still a topic of interest because the products are often interconvertible among unidirectionally, alternatively, or randomly twisted geometries and otherwise obtained as a mixture of them. Herein, we report the conformationally specific synthesis of twisted NGs where the geometry was reinforced by introducing 1,4-dioxane rings at a K-region of a central pyrene core that bears a large contortion. The 1,4-dioxane rings were generated by semi-deprotection, of tetraoxa[4.4.4]-propellanes in precursor molecules, which were confirmed to be engaged in forming C-C bonds via a Friedel-Crafts type mechanism. The large contortion within the pyrene core causes a narrowed HOMO-LUMO gap on account of unusual <i>p</i> <sub><i>z</i></sub> -lobe overlap between +<i>z</i> and -<i>z</i> sides, giving rise to red emission with a high quantum yield of 94% as well as stable redox processes of 2e<sup>-</sup> uptake/release.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 5","pages":"289-294"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117430/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/prechem.5c00001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/26 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Twisted nanographenes (NGs) are currently attracting a lot of attention owing to their geometrical and electronic structures that differ substantively from conventional planar and nonplanar NGs, while the strategic synthesis of twisted NGs is still a topic of interest because the products are often interconvertible among unidirectionally, alternatively, or randomly twisted geometries and otherwise obtained as a mixture of them. Herein, we report the conformationally specific synthesis of twisted NGs where the geometry was reinforced by introducing 1,4-dioxane rings at a K-region of a central pyrene core that bears a large contortion. The 1,4-dioxane rings were generated by semi-deprotection, of tetraoxa[4.4.4]-propellanes in precursor molecules, which were confirmed to be engaged in forming C-C bonds via a Friedel-Crafts type mechanism. The large contortion within the pyrene core causes a narrowed HOMO-LUMO gap on account of unusual p z -lobe overlap between +z and -z sides, giving rise to red emission with a high quantum yield of 94% as well as stable redox processes of 2e- uptake/release.

半脱保护诱导环化法合成交替扭曲纳米石墨烯。
由于扭曲纳米石墨烯的几何和电子结构与传统的平面和非平面纳米石墨烯有很大的不同,因此目前引起了人们的广泛关注,而扭曲纳米石墨烯的战略合成仍然是一个令人感兴趣的话题,因为其产物通常可以在单向、交替或随机扭曲的几何结构之间相互转换,或者作为它们的混合物得到。在此,我们报道了构象特异性的扭曲NGs合成,其中通过在中心芘核心的k区引入1,4-二氧六环来增强几何形状,该核具有较大的扭曲。1,4-二恶烷环是由四氧[4.4.4]-推进剂在前体分子中半脱保护生成的,经证实,四氧[4.4.4]-推进剂通过Friedel-Crafts型机制参与了C-C键的形成。由于芘核内的大畸变导致正负两侧的p -z波叶重叠,使得HOMO-LUMO间隙缩小,从而产生高量子产率达94%的红色发射以及稳定的2e-吸收/释放氧化还原过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信