Jinwoo Kim, Jina Ha, Seongok Kim, Gyungcheon Kim, Hakdong Shin
{"title":"Impact of Ginger on Gut Microbiota Composition and Function in a <i>Bacteroides</i>-Dominant Enterotype.","authors":"Jinwoo Kim, Jina Ha, Seongok Kim, Gyungcheon Kim, Hakdong Shin","doi":"10.4014/jmb.2503.03032","DOIUrl":null,"url":null,"abstract":"<p><p>Ginger (<i>Zingiber officinale</i>) has been used worldwide for centuries, valued for both its culinary applications and potential therapeutic properties. Its bioactive compounds exhibit antioxidant, anti-inflammatory, and metabolic regulatory effects, providing physiological benefits to the human body. However, its influence on the gut microbiota remains poorly understood. In this study, we investigated the impact of ginger on gut microbiota using an <i>in vitro</i> fecal incubation model. To minimize interindividual variability, we classified participants into enterotypes based on gut microbial composition, focusing on the <i>Bacteroides</i>-dominant enterotype. While ginger treatment did not significantly affect microbial alpha diversity, it induced distinct shifts in bacterial structure, suggesting compositional changes in the microbiota. At the phylum level, taxonomic analysis revealed a lower relative abundance of Bacteroidota and a higher relative abundance of Proteobacteria in the ginger-treated group compared to the control. Consistently, genus-level analysis showed an increased relative abundance of <i>Acinetobacter</i> and <i>Enterobacteriaceae</i>, both belonging to Proteobacteria, in the ginger-treated group. Predicted functional pathway analysis further revealed that ginger treatment enriched pathways related to linoleic acid metabolism, beta-alanine metabolism, geraniol degradation, and tetracycline biosynthesis. These findings suggest that ginger modulates gut microbiota composition, particularly by increasing the abundance of Proteobacteria-associated genera. This enterotype-based study provides a structured framework for evaluating dietary effects and may support the development of personalized dietary strategies targeting gut microbiome modulation.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2503032"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149393/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2503.03032","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ginger (Zingiber officinale) has been used worldwide for centuries, valued for both its culinary applications and potential therapeutic properties. Its bioactive compounds exhibit antioxidant, anti-inflammatory, and metabolic regulatory effects, providing physiological benefits to the human body. However, its influence on the gut microbiota remains poorly understood. In this study, we investigated the impact of ginger on gut microbiota using an in vitro fecal incubation model. To minimize interindividual variability, we classified participants into enterotypes based on gut microbial composition, focusing on the Bacteroides-dominant enterotype. While ginger treatment did not significantly affect microbial alpha diversity, it induced distinct shifts in bacterial structure, suggesting compositional changes in the microbiota. At the phylum level, taxonomic analysis revealed a lower relative abundance of Bacteroidota and a higher relative abundance of Proteobacteria in the ginger-treated group compared to the control. Consistently, genus-level analysis showed an increased relative abundance of Acinetobacter and Enterobacteriaceae, both belonging to Proteobacteria, in the ginger-treated group. Predicted functional pathway analysis further revealed that ginger treatment enriched pathways related to linoleic acid metabolism, beta-alanine metabolism, geraniol degradation, and tetracycline biosynthesis. These findings suggest that ginger modulates gut microbiota composition, particularly by increasing the abundance of Proteobacteria-associated genera. This enterotype-based study provides a structured framework for evaluating dietary effects and may support the development of personalized dietary strategies targeting gut microbiome modulation.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.