Weiqing Chen, Pengzhi Zhang, Tu N Tran, Yiwei Xiao, Shengyu Li, Vrutant V Shah, Hao Cheng, Kristopher W Brannan, Keith Youker, Li Lai, Longhou Fang, Yu Yang, Nhat-Tu Le, Jun-Ichi Abe, Shu-Hsia Chen, Qin Ma, Ken Chen, Qianqian Song, John P Cooke, Guangyu Wang
{"title":"A visual-omics foundation model to bridge histopathology with spatial transcriptomics.","authors":"Weiqing Chen, Pengzhi Zhang, Tu N Tran, Yiwei Xiao, Shengyu Li, Vrutant V Shah, Hao Cheng, Kristopher W Brannan, Keith Youker, Li Lai, Longhou Fang, Yu Yang, Nhat-Tu Le, Jun-Ichi Abe, Shu-Hsia Chen, Qin Ma, Ken Chen, Qianqian Song, John P Cooke, Guangyu Wang","doi":"10.1038/s41592-025-02707-1","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence has revolutionized computational biology. Recent developments in omics technologies, including single-cell RNA sequencing and spatial transcriptomics, provide detailed genomic data alongside tissue histology. However, current computational models focus on either omics or image analysis, lacking their integration. To address this, we developed OmiCLIP, a visual-omics foundation model linking hematoxylin and eosin images and transcriptomics using tissue patches from Visium data. We transformed transcriptomic data into 'sentences' by concatenating top-expressed gene symbols from each patch. We curated a dataset of 2.2 million paired tissue images and transcriptomic data across 32 organs to train OmiCLIP integrating histology and transcriptomics. Building on OmiCLIP, our Loki platform offers five key functions: tissue alignment, annotation via bulk RNA sequencing or marker genes, cell-type decomposition, image-transcriptomics retrieval and spatial transcriptomics gene expression prediction from hematoxylin and eosin-stained images. Compared with 22 state-of-the-art models on 5 simulations, and 19 public and 4 in-house experimental datasets, Loki demonstrated consistent accuracy and robustness.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":"1568-1582"},"PeriodicalIF":36.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240810/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02707-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence has revolutionized computational biology. Recent developments in omics technologies, including single-cell RNA sequencing and spatial transcriptomics, provide detailed genomic data alongside tissue histology. However, current computational models focus on either omics or image analysis, lacking their integration. To address this, we developed OmiCLIP, a visual-omics foundation model linking hematoxylin and eosin images and transcriptomics using tissue patches from Visium data. We transformed transcriptomic data into 'sentences' by concatenating top-expressed gene symbols from each patch. We curated a dataset of 2.2 million paired tissue images and transcriptomic data across 32 organs to train OmiCLIP integrating histology and transcriptomics. Building on OmiCLIP, our Loki platform offers five key functions: tissue alignment, annotation via bulk RNA sequencing or marker genes, cell-type decomposition, image-transcriptomics retrieval and spatial transcriptomics gene expression prediction from hematoxylin and eosin-stained images. Compared with 22 state-of-the-art models on 5 simulations, and 19 public and 4 in-house experimental datasets, Loki demonstrated consistent accuracy and robustness.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.