Patrick J Nugent, Heungwon Park, Cynthia L Wladyka, James N Yelland, Sayantani Sinha, Katharine Y Chen, Christine Bynum, Grace Quarterman, Stanley C Lee, Andrew C Hsieh, Arvind Rasi Subramaniam
{"title":"Decoding post-transcriptional regulatory networks by RNA-linked CRISPR screening in human cells.","authors":"Patrick J Nugent, Heungwon Park, Cynthia L Wladyka, James N Yelland, Sayantani Sinha, Katharine Y Chen, Christine Bynum, Grace Quarterman, Stanley C Lee, Andrew C Hsieh, Arvind Rasi Subramaniam","doi":"10.1038/s41592-025-02702-6","DOIUrl":null,"url":null,"abstract":"<p><p>RNAs undergo a complex choreography of metabolic processes that are regulated by thousands of RNA-associated proteins. Here we introduce ReLiC, a scalable and high-throughput RNA-linked CRISPR approach to measure the responses of diverse RNA metabolic processes to knockout of 2,092 human genes encoding all known RNA-associated proteins. ReLiC relies on an iterative strategy to integrate genes encoding Cas9, single-guide RNAs (sgRNAs) and barcoded reporter libraries into a defined genomic locus. Combining ReLiC with polysome fractionation reveals key regulators of ribosome occupancy, uncovering links between translation and proteostasis. Isoform-specific ReLiC captures differential regulation of intron retention and exon skipping by SF3B complex subunits. Chemogenomic ReLiC screens decipher translational regulators upstream of messenger RNA (mRNA) decay and identify a role for the ribosome collision sensor GCN1 during treatment with the anti-leukemic drug homoharringtonine. Our work demonstrates ReLiC as a powerful framework for discovering and dissecting post-transcriptional regulatory networks in human cells.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":"1237-1246"},"PeriodicalIF":36.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02702-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
RNAs undergo a complex choreography of metabolic processes that are regulated by thousands of RNA-associated proteins. Here we introduce ReLiC, a scalable and high-throughput RNA-linked CRISPR approach to measure the responses of diverse RNA metabolic processes to knockout of 2,092 human genes encoding all known RNA-associated proteins. ReLiC relies on an iterative strategy to integrate genes encoding Cas9, single-guide RNAs (sgRNAs) and barcoded reporter libraries into a defined genomic locus. Combining ReLiC with polysome fractionation reveals key regulators of ribosome occupancy, uncovering links between translation and proteostasis. Isoform-specific ReLiC captures differential regulation of intron retention and exon skipping by SF3B complex subunits. Chemogenomic ReLiC screens decipher translational regulators upstream of messenger RNA (mRNA) decay and identify a role for the ribosome collision sensor GCN1 during treatment with the anti-leukemic drug homoharringtonine. Our work demonstrates ReLiC as a powerful framework for discovering and dissecting post-transcriptional regulatory networks in human cells.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.