Jeffrey Ordner, Navneet Narula, Luis Chiriboga, Briana Zeck, Mariam Majd, Kapish Gupta, Rebecca Gaglia, Fang Zhou, Andre Moreira, Rami Iman, Jane P Ko, Linda Le, Rebecca G Wells, Neil D Theise
{"title":"Continuity of interstitial spaces within and outside the human lung.","authors":"Jeffrey Ordner, Navneet Narula, Luis Chiriboga, Briana Zeck, Mariam Majd, Kapish Gupta, Rebecca Gaglia, Fang Zhou, Andre Moreira, Rami Iman, Jane P Ko, Linda Le, Rebecca G Wells, Neil D Theise","doi":"10.1111/joa.14280","DOIUrl":null,"url":null,"abstract":"<p><p>There is a body-wide network of interstitial spaces that includes three components: a large-scale fascial network made up of fluid-filled spaces containing collagens and other extracellular matrix components like hyaluronic acid (HA), the peri-vascular/capillary interstitium, and intercellular interstitial spaces. Staining for HA within the colon, skin, and liver has demonstrated spatial continuity of the fascial interstitium across tissue layers and between organs, while continuity of HA staining between perineurial and adventitial sheathes beyond organ boundaries confirmed that they also participate in this body-wide network. We asked whether the pulmonary interstitium comprises a continuous organ-wide network that also connects to the body-wide interstitium via routes along nerves and the vasculature. We studied archival lung lobectomy specimens containing normal tissues inclusive of all lung anatomical units from six females and three males (mean age 53+/- 16.5 years). For comparison, we also studied normal mouse lung. Multiplex immunohistochemical cocktails were used to identify: (1) HA, CD34, and vimentin - highlighting interstitium; (2) HA, CD34, and podoplanin (D2-40) - highlighting relationships between the interstitium, vasculature, and lymphatics. Sizes of extracellular APP were measured. Tissues from nine patients (six females, three males, mean age 53+/- 16.5 years) were studied. HA staining was continuous throughout the five major anatomic compartments of the lung: alveolar walls, subpleural connective tissue, centrilobular peribronchovascular compartment, interlobular septal compartment, and axial peribronchovascular of the hilum, with similar findings in murine lung tissue. Continuity with interstitial spaces of the perineurium and adventitia was confirmed. The distribution of APP corresponded to known routes of lymphatic drainage, superficial and deep. APP within perineurium and perivascular adventitia further demonstrated continuity between intra- and extrapulmonary interstitium. To conclude, all segments of the lung interstitium are connected and are linked along nerves and the vascular tree to a body-wide communication network. These findings have significant implications for understanding lung physiology and pathobiology, suggesting routes of passage for inflammatory cells and mediators, malignant cells, and infectious agents. Interstitial spaces may be important in microbiome signaling within and beyond the lung and may be a component of the lung-brain axis.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14280","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a body-wide network of interstitial spaces that includes three components: a large-scale fascial network made up of fluid-filled spaces containing collagens and other extracellular matrix components like hyaluronic acid (HA), the peri-vascular/capillary interstitium, and intercellular interstitial spaces. Staining for HA within the colon, skin, and liver has demonstrated spatial continuity of the fascial interstitium across tissue layers and between organs, while continuity of HA staining between perineurial and adventitial sheathes beyond organ boundaries confirmed that they also participate in this body-wide network. We asked whether the pulmonary interstitium comprises a continuous organ-wide network that also connects to the body-wide interstitium via routes along nerves and the vasculature. We studied archival lung lobectomy specimens containing normal tissues inclusive of all lung anatomical units from six females and three males (mean age 53+/- 16.5 years). For comparison, we also studied normal mouse lung. Multiplex immunohistochemical cocktails were used to identify: (1) HA, CD34, and vimentin - highlighting interstitium; (2) HA, CD34, and podoplanin (D2-40) - highlighting relationships between the interstitium, vasculature, and lymphatics. Sizes of extracellular APP were measured. Tissues from nine patients (six females, three males, mean age 53+/- 16.5 years) were studied. HA staining was continuous throughout the five major anatomic compartments of the lung: alveolar walls, subpleural connective tissue, centrilobular peribronchovascular compartment, interlobular septal compartment, and axial peribronchovascular of the hilum, with similar findings in murine lung tissue. Continuity with interstitial spaces of the perineurium and adventitia was confirmed. The distribution of APP corresponded to known routes of lymphatic drainage, superficial and deep. APP within perineurium and perivascular adventitia further demonstrated continuity between intra- and extrapulmonary interstitium. To conclude, all segments of the lung interstitium are connected and are linked along nerves and the vascular tree to a body-wide communication network. These findings have significant implications for understanding lung physiology and pathobiology, suggesting routes of passage for inflammatory cells and mediators, malignant cells, and infectious agents. Interstitial spaces may be important in microbiome signaling within and beyond the lung and may be a component of the lung-brain axis.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.