Advances in Electrocardiogram-Based Artificial Intelligence Reveal Multisystem Biomarkers.

Journal of clinical & experimental cardiology Pub Date : 2025-01-01 Epub Date: 2025-03-24
Xichong Liu, Sabyasachi Bandyopadhyay, Albert J Rogers
{"title":"Advances in Electrocardiogram-Based Artificial Intelligence Reveal Multisystem Biomarkers.","authors":"Xichong Liu, Sabyasachi Bandyopadhyay, Albert J Rogers","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>As Artificial Intelligence (AI) plays an increasingly prominent role in society, its application in clinical cardiology is gaining traction by providing innovative diagnostic, prognostic, and therapeutic solutions. Electrocardiogram (ECG), as a ubiquitous diagnostic tool in cardiology, has emerged as the leading data source for Deep Learning (DL) applications. A recent study from our group used ECG-based DL model to identify cardiac wall motion abnormalities and outperformed expert human interpretation. Motivated by this work and that of many others, we aim to discuss advances, limitations, future directions, and equity considerations in DL models for ECG-based AI applications.</p>","PeriodicalId":89581,"journal":{"name":"Journal of clinical & experimental cardiology","volume":"16 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121951/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical & experimental cardiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As Artificial Intelligence (AI) plays an increasingly prominent role in society, its application in clinical cardiology is gaining traction by providing innovative diagnostic, prognostic, and therapeutic solutions. Electrocardiogram (ECG), as a ubiquitous diagnostic tool in cardiology, has emerged as the leading data source for Deep Learning (DL) applications. A recent study from our group used ECG-based DL model to identify cardiac wall motion abnormalities and outperformed expert human interpretation. Motivated by this work and that of many others, we aim to discuss advances, limitations, future directions, and equity considerations in DL models for ECG-based AI applications.

基于心电图的人工智能研究进展揭示了多系统生物标志物。
随着人工智能(AI)在社会中发挥越来越重要的作用,通过提供创新的诊断、预后和治疗解决方案,人工智能在临床心脏病学中的应用正在获得关注。心电图(ECG)作为心脏病学中无处不在的诊断工具,已成为深度学习(DL)应用的主要数据源。我们小组最近的一项研究使用基于心电图的DL模型来识别心脏壁运动异常,并且优于专家的人类解释。在这项工作和其他许多工作的激励下,我们的目标是讨论基于ecg的人工智能应用的DL模型的进展、限制、未来方向和公平性考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信