Gahyun Lim, Zachery R Jarrell, Young-Mi Go, Dean P Jones
{"title":"Amino Acid Associations in Healthy and Unhealthy Obesity.","authors":"Gahyun Lim, Zachery R Jarrell, Young-Mi Go, Dean P Jones","doi":"10.1016/j.tjnut.2025.04.037","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prior research shows that amino acid metabolism plays a role in the biological processes distinguishing metabolically healthy nonobese (MHN), metabolically healthy obese (MHO), and metabolically unhealthy obese (MUO) phenotypes. Metabolic network analysis tools are available to test for differences in amino acid associations but have not been applied to MHN, MHO, and MUO.</p><p><strong>Objectives: </strong>We aimed to characterize amino acid metabolic networks and identify key metabolic shifts distinguishing MHN, MHO, and MUO phenotypes through metabolomics and network analysis.</p><p><strong>Methods: </strong>The plasma metabolome was analyzed by liquid chromatography with high-resolution mass spectrometry in a cross-sectional study of 213 middle-aged adults classified as MHN, MHO, or MUO based on body mass index, blood pressure, blood lipids, and blood glucose. Differential metabolic network and pathway enrichment analyses were used to measure the centrality of amino acid metabolism and associated metabolic pathways.</p><p><strong>Results: </strong>Partial least squares-discriminant analysis showed that amino acids were among the top discriminatory metabolites (variable importance in projection >2) for MHN, MHO, and MUO and included tryptophan (Trp), phenylalanine (Phe), tyrosine, cystine (disulfide of cysteine), alanine, glutamate, valine, and leucine/isoleucine. Network analyses with these discriminatory amino acids showed that Trp had a high network centrality in all groups, with the highest value in MHN and MHO. Phe gained centrality in obese phenotypes and became the central amino acid in MUO. Pathway enrichment analyses revealed that Phe-centered metabolic communities in obese groups (MHO and MUO) were enriched fatty acid oxidation pathways. Network and pathway analyses using all amino acids showed comparable results.</p><p><strong>Conclusions: </strong>Amino acid networks differ in healthy and unhealthy obesity phenotypes, with the most central amino acid Trp in MHN and MHO shifting to Phe in MUO. Mechanistic studies are needed to determine whether increased Phe centrality is a cause or effect of metabolic dysfunctions in obesity.</p>","PeriodicalId":16620,"journal":{"name":"Journal of Nutrition","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tjnut.2025.04.037","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Prior research shows that amino acid metabolism plays a role in the biological processes distinguishing metabolically healthy nonobese (MHN), metabolically healthy obese (MHO), and metabolically unhealthy obese (MUO) phenotypes. Metabolic network analysis tools are available to test for differences in amino acid associations but have not been applied to MHN, MHO, and MUO.
Objectives: We aimed to characterize amino acid metabolic networks and identify key metabolic shifts distinguishing MHN, MHO, and MUO phenotypes through metabolomics and network analysis.
Methods: The plasma metabolome was analyzed by liquid chromatography with high-resolution mass spectrometry in a cross-sectional study of 213 middle-aged adults classified as MHN, MHO, or MUO based on body mass index, blood pressure, blood lipids, and blood glucose. Differential metabolic network and pathway enrichment analyses were used to measure the centrality of amino acid metabolism and associated metabolic pathways.
Results: Partial least squares-discriminant analysis showed that amino acids were among the top discriminatory metabolites (variable importance in projection >2) for MHN, MHO, and MUO and included tryptophan (Trp), phenylalanine (Phe), tyrosine, cystine (disulfide of cysteine), alanine, glutamate, valine, and leucine/isoleucine. Network analyses with these discriminatory amino acids showed that Trp had a high network centrality in all groups, with the highest value in MHN and MHO. Phe gained centrality in obese phenotypes and became the central amino acid in MUO. Pathway enrichment analyses revealed that Phe-centered metabolic communities in obese groups (MHO and MUO) were enriched fatty acid oxidation pathways. Network and pathway analyses using all amino acids showed comparable results.
Conclusions: Amino acid networks differ in healthy and unhealthy obesity phenotypes, with the most central amino acid Trp in MHN and MHO shifting to Phe in MUO. Mechanistic studies are needed to determine whether increased Phe centrality is a cause or effect of metabolic dysfunctions in obesity.
期刊介绍:
The Journal of Nutrition (JN/J Nutr) publishes peer-reviewed original research papers covering all aspects of experimental nutrition in humans and other animal species; special articles such as reviews and biographies of prominent nutrition scientists; and issues, opinions, and commentaries on controversial issues in nutrition. Supplements are frequently published to provide extended discussion of topics of special interest.