Matthew D Bourn, Lauren F Daly, Jim F Huggett, Julian Braybrook, Jeanne F Rivera
{"title":"Evaluation of image analysis tools for the measurement of cellular morphology.","authors":"Matthew D Bourn, Lauren F Daly, Jim F Huggett, Julian Braybrook, Jeanne F Rivera","doi":"10.3389/fcell.2025.1572212","DOIUrl":null,"url":null,"abstract":"<p><p>Morphological cell analysis offers a means of identification and classification of key morphological measurement parameters linked to cell bioactivity and cell health and, as such, it is of great interest to academic and industrial research sectors. Widespread adoption of this approach has yet to occur, partially due to the lack of alignment in analysis methodologies and output metrics, limiting data comparability. Work within the cell metrology and wider multidisciplinary community aims to reduce data variability through the improved alignment of image acquisition and analysis methodologies. Furthermore, to improve data comparability, research has also focused on the identification of a minimal set of morphological measurands, often termed critical quality attributes (CQAs), which are traceable to standardised (SI) units of measurement. Whilst efforts in defining CQAs have progressed significantly for healthcare applications, there are still numerous measurement challenges associated with image analysis of cultured cells due, in part, to their complex heterogenous nature. This review evaluates the various automated image analysis tools developed for morphological analysis of four commonly considered cell morphological features: the nucleus, actin cytoskeleton, mitochondria, and the cell membrane. The measurement methodologies and outputs from each tool have been evaluated and coinciding outputs have been highlighted as potential CQAs.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1572212"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1572212","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Morphological cell analysis offers a means of identification and classification of key morphological measurement parameters linked to cell bioactivity and cell health and, as such, it is of great interest to academic and industrial research sectors. Widespread adoption of this approach has yet to occur, partially due to the lack of alignment in analysis methodologies and output metrics, limiting data comparability. Work within the cell metrology and wider multidisciplinary community aims to reduce data variability through the improved alignment of image acquisition and analysis methodologies. Furthermore, to improve data comparability, research has also focused on the identification of a minimal set of morphological measurands, often termed critical quality attributes (CQAs), which are traceable to standardised (SI) units of measurement. Whilst efforts in defining CQAs have progressed significantly for healthcare applications, there are still numerous measurement challenges associated with image analysis of cultured cells due, in part, to their complex heterogenous nature. This review evaluates the various automated image analysis tools developed for morphological analysis of four commonly considered cell morphological features: the nucleus, actin cytoskeleton, mitochondria, and the cell membrane. The measurement methodologies and outputs from each tool have been evaluated and coinciding outputs have been highlighted as potential CQAs.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.