Interplay between material properties and cellular effects drives distinct pattern of interaction of graphene oxide with cancer and non-cancer cells.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yingxian Chen, Vinicio Rosano, Neus Lozano, YuYoung Shin, Aleksandr Mironov, David Spiller, Cinzia Casiraghi, Kostas Kostarelos, Sandra Vranic
{"title":"Interplay between material properties and cellular effects drives distinct pattern of interaction of graphene oxide with cancer and non-cancer cells.","authors":"Yingxian Chen, Vinicio Rosano, Neus Lozano, YuYoung Shin, Aleksandr Mironov, David Spiller, Cinzia Casiraghi, Kostas Kostarelos, Sandra Vranic","doi":"10.1186/s12951-025-03400-3","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how graphene oxide (GO) interacts with cells is crucial for its safe and efficient biomedical applications. Despite extensive research, a systematic investigation using a panel of cell lines, thoroughly characterized label-free nanomaterials, and complementary analytical techniques is lacking. Here, we examined the uptake of thin GO sheets with distinct lateral dimensions in 13 cell lines: 8 cancer (HeLa, A549, PC3, DU-145, LNCaP, SW-480, SH-SY5Y, U87-MG) and 5 non-cancer (BEAS-2B, NIH/3T3, PNT-2, HaCaT, 293T), using confocal microscopy, transmission electron microscopy, and flow cytometry. Our results reveal a striking difference in GO uptake: non-cancer cells internalized GO efficiently, while in cancer cells, GO predominantly interacted with the plasma membrane, showing minimal to no internalization. Comparison to other nanomaterials (polystyrene beads and graphene flakes) confirmed that cancer cells internalize materials similarly to non-cancer cells, indicating GO-specific interactions. We identified that GO's thinness plays important role in this differential uptake. More importantly, GO disrupts the actin cytoskeleton of cancer cells, impairing the migration in cancer but not in non-cancer cells. We propose that thin GO sheets act as a cue upon interaction with the plasma membrane of cancer cell lines, subsequently inducing actin filaments disruption leading to impaired endocytosis, migration activity, and reduced capacity of cancer cells towards GO uptake.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"393"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03400-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how graphene oxide (GO) interacts with cells is crucial for its safe and efficient biomedical applications. Despite extensive research, a systematic investigation using a panel of cell lines, thoroughly characterized label-free nanomaterials, and complementary analytical techniques is lacking. Here, we examined the uptake of thin GO sheets with distinct lateral dimensions in 13 cell lines: 8 cancer (HeLa, A549, PC3, DU-145, LNCaP, SW-480, SH-SY5Y, U87-MG) and 5 non-cancer (BEAS-2B, NIH/3T3, PNT-2, HaCaT, 293T), using confocal microscopy, transmission electron microscopy, and flow cytometry. Our results reveal a striking difference in GO uptake: non-cancer cells internalized GO efficiently, while in cancer cells, GO predominantly interacted with the plasma membrane, showing minimal to no internalization. Comparison to other nanomaterials (polystyrene beads and graphene flakes) confirmed that cancer cells internalize materials similarly to non-cancer cells, indicating GO-specific interactions. We identified that GO's thinness plays important role in this differential uptake. More importantly, GO disrupts the actin cytoskeleton of cancer cells, impairing the migration in cancer but not in non-cancer cells. We propose that thin GO sheets act as a cue upon interaction with the plasma membrane of cancer cell lines, subsequently inducing actin filaments disruption leading to impaired endocytosis, migration activity, and reduced capacity of cancer cells towards GO uptake.

材料特性和细胞效应之间的相互作用驱动了氧化石墨烯与癌细胞和非癌细胞之间独特的相互作用模式。
了解氧化石墨烯(GO)如何与细胞相互作用对于其安全有效的生物医学应用至关重要。尽管进行了广泛的研究,但缺乏使用细胞系小组、彻底表征无标签纳米材料和互补分析技术的系统调查。在这里,我们使用共聚焦显微镜、透射电镜和流式细胞术检测了13种细胞系中具有不同横向尺寸的氧化石墨烯薄片的摄取情况:8种癌症细胞系(HeLa、A549、PC3、DU-145、LNCaP、SW-480、SH-SY5Y、U87-MG)和5种非癌症细胞系(BEAS-2B、NIH/3T3、PNT-2、HaCaT、293T)。我们的研究结果揭示了氧化石墨烯摄取的显著差异:非癌细胞有效地内化氧化石墨烯,而在癌细胞中,氧化石墨烯主要与质膜相互作用,几乎没有内化。与其他纳米材料(聚苯乙烯珠和石墨烯片)的比较证实,癌细胞内部的材料与非癌细胞相似,表明氧化石墨烯特异性相互作用。我们发现氧化石墨烯的薄度在这种差异摄取中起着重要作用。更重要的是,氧化石墨烯破坏癌细胞的肌动蛋白细胞骨架,损害癌细胞的迁移,而不影响非癌细胞。我们认为,氧化石墨烯薄片在与癌细胞细胞系的质膜相互作用时起到提示作用,随后诱导肌动蛋白丝断裂,导致内吞作用、迁移活性受损,并降低癌细胞摄取氧化石墨烯的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信