Evaluating the impact of metabolic indicators and scores on cardiovascular events using machine learning.

IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Guanmou Li, Cheng Luo, Teng Ge, Kunyang He, Miao Zhang, Jinlin Hu, Baoshi Zheng, Rongjun Zou, Xiaoping Fan
{"title":"Evaluating the impact of metabolic indicators and scores on cardiovascular events using machine learning.","authors":"Guanmou Li, Cheng Luo, Teng Ge, Kunyang He, Miao Zhang, Jinlin Hu, Baoshi Zheng, Rongjun Zou, Xiaoping Fan","doi":"10.1186/s13098-025-01753-1","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases such as coronary artery disease, myocardial infarction, and heart failure impact millions of people annually globally and are a major cause of disease and death. This study explores the predictive capabilities of novel metabolic indices (TyG, HOMA-IR, TG/HDL-C, and VAI) for major adverse cardiovascular events (MACE) and analyzes their relationships with diabetes and cardiovascular risks. Using data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2003 to 2018, we applied multiple machine learning algorithms to evaluate nine metabolic indicators including cholesterol levels, triglycerides, insulin, and waist circumference. Through cross-validation to validate model performance, the XGBoost algorithm demonstrated the most accurate performance in predicting cardiovascular outcomes, particularly for diseases like angina and heart failure. Additionally, SHAP value analysis confirmed the critical roles of waist circumference and METS-IR in predicting adverse cardiovascular events. Furthermore, we employed 100 machine learning algorithms to calculate the AUC values of metabolic indicators in predicting AP, CHD, HF, and MI, showing that METS-IR had the greatest contribution in these aspects. This research highlights the significance of metabolic indices in stratifying cardiovascular risks and presents potential avenues for targeted preventive strategies.</p>","PeriodicalId":11106,"journal":{"name":"Diabetology & Metabolic Syndrome","volume":"17 1","pages":"180"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123715/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetology & Metabolic Syndrome","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13098-025-01753-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases such as coronary artery disease, myocardial infarction, and heart failure impact millions of people annually globally and are a major cause of disease and death. This study explores the predictive capabilities of novel metabolic indices (TyG, HOMA-IR, TG/HDL-C, and VAI) for major adverse cardiovascular events (MACE) and analyzes their relationships with diabetes and cardiovascular risks. Using data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2003 to 2018, we applied multiple machine learning algorithms to evaluate nine metabolic indicators including cholesterol levels, triglycerides, insulin, and waist circumference. Through cross-validation to validate model performance, the XGBoost algorithm demonstrated the most accurate performance in predicting cardiovascular outcomes, particularly for diseases like angina and heart failure. Additionally, SHAP value analysis confirmed the critical roles of waist circumference and METS-IR in predicting adverse cardiovascular events. Furthermore, we employed 100 machine learning algorithms to calculate the AUC values of metabolic indicators in predicting AP, CHD, HF, and MI, showing that METS-IR had the greatest contribution in these aspects. This research highlights the significance of metabolic indices in stratifying cardiovascular risks and presents potential avenues for targeted preventive strategies.

利用机器学习评估代谢指标和评分对心血管事件的影响。
心血管疾病,如冠状动脉疾病、心肌梗死和心力衰竭,每年影响全球数百万人,是导致疾病和死亡的主要原因。本研究探讨了新型代谢指标(TyG、HOMA-IR、TG/HDL-C和VAI)对主要心血管不良事件(MACE)的预测能力,并分析了它们与糖尿病和心血管风险的关系。利用2003年至2018年国家健康与营养检查调查(NHANES)的数据,我们应用多种机器学习算法来评估9项代谢指标,包括胆固醇水平、甘油三酯、胰岛素和腰围。通过交叉验证来验证模型的性能,XGBoost算法在预测心血管结果方面表现出了最准确的性能,特别是在心绞痛和心力衰竭等疾病方面。此外,SHAP值分析证实了腰围和METS-IR在预测心血管不良事件中的关键作用。此外,我们采用100种机器学习算法计算代谢指标在预测AP、CHD、HF和MI方面的AUC值,结果表明met - ir在这些方面的贡献最大。这项研究强调了代谢指标在心血管风险分层中的重要性,并提出了有针对性的预防策略的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diabetology & Metabolic Syndrome
Diabetology & Metabolic Syndrome ENDOCRINOLOGY & METABOLISM-
CiteScore
6.20
自引率
0.00%
发文量
170
审稿时长
7.5 months
期刊介绍: Diabetology & Metabolic Syndrome publishes articles on all aspects of the pathophysiology of diabetes and metabolic syndrome. By publishing original material exploring any area of laboratory, animal or clinical research into diabetes and metabolic syndrome, the journal offers a high-visibility forum for new insights and discussions into the issues of importance to the relevant community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信