{"title":"Improving data sharing and knowledge transfer via the Neuroelectrophysiology Analysis Ontology (NEAO).","authors":"Cristiano A Köhler, Sonja Grün, Michael Denker","doi":"10.1038/s41597-025-05213-3","DOIUrl":null,"url":null,"abstract":"<p><p>Describing the analysis of data from electrophysiology experiments investigating the function of neural systems is challenging. On the one hand, data can be analyzed by distinct methods with similar purposes, such as different algorithms to estimate the spectral power content of a measured time series. On the other hand, different software codes can implement the same analysis algorithm, while adopting different names to identify functions and parameters. These ambiguities complicate reporting analysis results, e.g., in a manuscript or on a scientific platform. Here, we illustrate how an ontology to describe the analysis process can assist in improving clarity, rigour and comprehensibility by complementing, simplifying and classifying the details of the implementation. We implemented the Neuroelectrophysiology Analysis Ontology (NEAO) to define a vocabulary and to standardize the descriptions of processes for neuroelectrophysiology data analysis. Real-world examples demonstrate how NEAO can annotate provenance information describing an analysis. Based on such provenance, we detail how it supports querying information (e.g., using knowledge graphs) that enable researchers to find, understand and reuse analysis results.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"907"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122730/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05213-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Describing the analysis of data from electrophysiology experiments investigating the function of neural systems is challenging. On the one hand, data can be analyzed by distinct methods with similar purposes, such as different algorithms to estimate the spectral power content of a measured time series. On the other hand, different software codes can implement the same analysis algorithm, while adopting different names to identify functions and parameters. These ambiguities complicate reporting analysis results, e.g., in a manuscript or on a scientific platform. Here, we illustrate how an ontology to describe the analysis process can assist in improving clarity, rigour and comprehensibility by complementing, simplifying and classifying the details of the implementation. We implemented the Neuroelectrophysiology Analysis Ontology (NEAO) to define a vocabulary and to standardize the descriptions of processes for neuroelectrophysiology data analysis. Real-world examples demonstrate how NEAO can annotate provenance information describing an analysis. Based on such provenance, we detail how it supports querying information (e.g., using knowledge graphs) that enable researchers to find, understand and reuse analysis results.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.