Improving data sharing and knowledge transfer via the Neuroelectrophysiology Analysis Ontology (NEAO).

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Cristiano A Köhler, Sonja Grün, Michael Denker
{"title":"Improving data sharing and knowledge transfer via the Neuroelectrophysiology Analysis Ontology (NEAO).","authors":"Cristiano A Köhler, Sonja Grün, Michael Denker","doi":"10.1038/s41597-025-05213-3","DOIUrl":null,"url":null,"abstract":"<p><p>Describing the analysis of data from electrophysiology experiments investigating the function of neural systems is challenging. On the one hand, data can be analyzed by distinct methods with similar purposes, such as different algorithms to estimate the spectral power content of a measured time series. On the other hand, different software codes can implement the same analysis algorithm, while adopting different names to identify functions and parameters. These ambiguities complicate reporting analysis results, e.g., in a manuscript or on a scientific platform. Here, we illustrate how an ontology to describe the analysis process can assist in improving clarity, rigour and comprehensibility by complementing, simplifying and classifying the details of the implementation. We implemented the Neuroelectrophysiology Analysis Ontology (NEAO) to define a vocabulary and to standardize the descriptions of processes for neuroelectrophysiology data analysis. Real-world examples demonstrate how NEAO can annotate provenance information describing an analysis. Based on such provenance, we detail how it supports querying information (e.g., using knowledge graphs) that enable researchers to find, understand and reuse analysis results.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"907"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122730/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05213-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Describing the analysis of data from electrophysiology experiments investigating the function of neural systems is challenging. On the one hand, data can be analyzed by distinct methods with similar purposes, such as different algorithms to estimate the spectral power content of a measured time series. On the other hand, different software codes can implement the same analysis algorithm, while adopting different names to identify functions and parameters. These ambiguities complicate reporting analysis results, e.g., in a manuscript or on a scientific platform. Here, we illustrate how an ontology to describe the analysis process can assist in improving clarity, rigour and comprehensibility by complementing, simplifying and classifying the details of the implementation. We implemented the Neuroelectrophysiology Analysis Ontology (NEAO) to define a vocabulary and to standardize the descriptions of processes for neuroelectrophysiology data analysis. Real-world examples demonstrate how NEAO can annotate provenance information describing an analysis. Based on such provenance, we detail how it supports querying information (e.g., using knowledge graphs) that enable researchers to find, understand and reuse analysis results.

通过神经电生理分析本体(NEAO)改进数据共享和知识转移。
描述对研究神经系统功能的电生理学实验数据的分析是具有挑战性的。一方面,可以用不同的方法来分析数据,但目的相似,例如用不同的算法来估计被测时间序列的谱功率含量。另一方面,不同的软件代码可以实现相同的分析算法,而采用不同的名称来标识函数和参数。这些模糊性使报告分析结果复杂化,例如,在手稿或科学平台上。在这里,我们将说明描述分析过程的本体如何通过补充、简化和分类实现细节来帮助提高清晰度、严谨性和可理解性。我们实现了神经电生理分析本体(NEAO)来定义词汇表并标准化神经电生理数据分析过程的描述。真实世界的例子演示了NEAO如何注释描述分析的来源信息。基于这种来源,我们详细说明了它如何支持查询信息(例如,使用知识图),使研究人员能够找到、理解和重用分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信