{"title":"Electromagnetohydrodynamic flow of fractional Maxwell fluids through a stenosed artery: Caputo fractional derivatives approach.","authors":"Tayyaba Nazar, Muhammad Shahzad Shabbir","doi":"10.1007/s10867-025-09684-8","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the electromagnetohydrodynamic (EMHD) flow of fractional Maxwell fluids through a stenosed artery, accounting for body acceleration. The flow is considered highly pulsatile. The mathematical model is formulated using differential forms of the conservation of mass and momentum. The governing equations are nondimensionalized and simplified by assuming mild stenosis. Through the application of the Caputo fractional derivative, the classical problem is transformed into its fractional equivalent. Solutions are derived using Laplace and finite Hankel transformations, with the inverse Laplace transform applied afterward. The findings show that blood velocity, flow rate, and shear stress fluctuate continuously over time due to the pulsatile flow and the effects of body acceleration.</p>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"51 1","pages":"19"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122999/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10867-025-09684-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the electromagnetohydrodynamic (EMHD) flow of fractional Maxwell fluids through a stenosed artery, accounting for body acceleration. The flow is considered highly pulsatile. The mathematical model is formulated using differential forms of the conservation of mass and momentum. The governing equations are nondimensionalized and simplified by assuming mild stenosis. Through the application of the Caputo fractional derivative, the classical problem is transformed into its fractional equivalent. Solutions are derived using Laplace and finite Hankel transformations, with the inverse Laplace transform applied afterward. The findings show that blood velocity, flow rate, and shear stress fluctuate continuously over time due to the pulsatile flow and the effects of body acceleration.
期刊介绍:
Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials.
The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.