Association of glucagon-like peptide-1 receptor agonists with atrial fibrillation, cardiac arrest, and ventricular fibrillation: Casual evidence from a drug target Mendelian randomization.
{"title":"Association of glucagon-like peptide-1 receptor agonists with atrial fibrillation, cardiac arrest, and ventricular fibrillation: Casual evidence from a drug target Mendelian randomization.","authors":"Xinyi Zhang, Nanqin Peng, Xiaoyue Zhang, Zicheng Zhu, Yan Miao, Yuting Wu, Jitao Ling, Chen Li, Wenli Gu, Jing Zhang, Abudukeremu Ayiguli, Ziheng Zheng, Peng Yu, Xiao Liu","doi":"10.1186/s13098-025-01712-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have shown benefits for cardiorenal outcomes in patients with type 2 diabetes mellitus. Although some observational studies suggest that GLP-1RAs protect against arrhythmias, the evidence remains inconclusive.</p><p><strong>Methods: </strong>This study aimed to assess the causal relationship between GLP-1RAs and arrhythmias, including atrial fibrillation (AF), cardiac arrest, and ventricular fibrillation. We performed a two-sample Mendelian randomization (MR) analysis to examine the associations between genetically proxied GLP-1RAs and the risk of arrhythmias. Genetic instruments for GLP-1RAs were obtained from the cis-expression quantitative trait loci of the GLP1R gene, on the basis of data from the eQTLGen Consortium. Genome-wide association study (GWAS) data for AF were sourced from FinnGen10, whereas data for cardiac arrest and ventricular fibrillation came from the GWAS Catalog. Bayesian colocalization and multivariable Mendelian randomization (MVMR) analyses were conducted as supplementary analyses.</p><p><strong>Results: </strong>Twelve independent single nucleotide polymorphisms were identified as genetic instruments for GLP-1RAs. MR analysis indicated that genetically proxied GLP-1RAs were associated with a reduced risk of AF (odds ratio [OR] = 0.78, 95% confidence interval [CI] = 0.71-0.85, p = 4.45E-08, posterior probability of hypothesis 4 [PP.H4] = 0.007) and a lower risk of cardiac arrest and ventricular fibrillation (OR = 0.60, 95% CI = 0.42-0.85, p = 0.0039, PP.H4 = 0.018). Bayesian colocalization analysis revealed that genetically proxied GLP-1RAs did not share genetic variation with arrhythmias. MVMR analysis revealed that, after adjusting for body mass index and type 2 diabetes mellitus, genetically proxied GLP-1RAs did not have a significant effect on the risk of arrhythmias.</p><p><strong>Conclusions: </strong>Our findings suggest that genetically proxied GLP-1RAs are causally associated with a reduced risk of AF, cardiac arrest, and ventricular fibrillation. Further randomized controlled trials are needed to confirm these results.</p>","PeriodicalId":11106,"journal":{"name":"Diabetology & Metabolic Syndrome","volume":"17 1","pages":"179"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetology & Metabolic Syndrome","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13098-025-01712-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have shown benefits for cardiorenal outcomes in patients with type 2 diabetes mellitus. Although some observational studies suggest that GLP-1RAs protect against arrhythmias, the evidence remains inconclusive.
Methods: This study aimed to assess the causal relationship between GLP-1RAs and arrhythmias, including atrial fibrillation (AF), cardiac arrest, and ventricular fibrillation. We performed a two-sample Mendelian randomization (MR) analysis to examine the associations between genetically proxied GLP-1RAs and the risk of arrhythmias. Genetic instruments for GLP-1RAs were obtained from the cis-expression quantitative trait loci of the GLP1R gene, on the basis of data from the eQTLGen Consortium. Genome-wide association study (GWAS) data for AF were sourced from FinnGen10, whereas data for cardiac arrest and ventricular fibrillation came from the GWAS Catalog. Bayesian colocalization and multivariable Mendelian randomization (MVMR) analyses were conducted as supplementary analyses.
Results: Twelve independent single nucleotide polymorphisms were identified as genetic instruments for GLP-1RAs. MR analysis indicated that genetically proxied GLP-1RAs were associated with a reduced risk of AF (odds ratio [OR] = 0.78, 95% confidence interval [CI] = 0.71-0.85, p = 4.45E-08, posterior probability of hypothesis 4 [PP.H4] = 0.007) and a lower risk of cardiac arrest and ventricular fibrillation (OR = 0.60, 95% CI = 0.42-0.85, p = 0.0039, PP.H4 = 0.018). Bayesian colocalization analysis revealed that genetically proxied GLP-1RAs did not share genetic variation with arrhythmias. MVMR analysis revealed that, after adjusting for body mass index and type 2 diabetes mellitus, genetically proxied GLP-1RAs did not have a significant effect on the risk of arrhythmias.
Conclusions: Our findings suggest that genetically proxied GLP-1RAs are causally associated with a reduced risk of AF, cardiac arrest, and ventricular fibrillation. Further randomized controlled trials are needed to confirm these results.
期刊介绍:
Diabetology & Metabolic Syndrome publishes articles on all aspects of the pathophysiology of diabetes and metabolic syndrome.
By publishing original material exploring any area of laboratory, animal or clinical research into diabetes and metabolic syndrome, the journal offers a high-visibility forum for new insights and discussions into the issues of importance to the relevant community.