Mateusz Wdowiak, Sada Raza, Mateusz Grotek, Rafał Zbonikowski, Julita Nowakowska, Maria Doligalska, Ningjing Cai, Zhi Luo, Jan Paczesny
{"title":"Phage/nanoparticle cocktails for a biocompatible and environmentally friendly antibacterial therapy.","authors":"Mateusz Wdowiak, Sada Raza, Mateusz Grotek, Rafał Zbonikowski, Julita Nowakowska, Maria Doligalska, Ningjing Cai, Zhi Luo, Jan Paczesny","doi":"10.1007/s00253-025-13526-x","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance continues to rise, necessitating alternative strategies. Bacteriophages have emerged as promising natural antibacterial agents, offering a targeted approach to combating bacterial infections. Combining bacteriophages with nanoparticles presents a novel approach that could enhance antibacterial potency while reducing the risk of resistance. While phage/antibiotic cocktails are widely explored to enhance antibacterial efficacy and prevent resistance, research on phage/nanoparticle combinations remains limited. We explore the synergy between green tea extract-capped silver nanoparticles (G-TeaNPs) and bacteriophages in combating pathogenic bacteria (methicillin-resistant Staphylococcus aureus, Salmonella enterica). G-TeaNPs show minimal antiphage activity, ensuring compatibility in phage-NP formulations. These combinations significantly reduce bacterial counts in a short time (only 3 h), e.g., S. aureus survival is around 30% after incubation with just 0.001 mg/mL of G-TeaNPs, while G-TeaNPs and phages alone result in around 80% and 70% survival, respectively. Cytotoxicity tests against eukaryotic 3T3 NIH fibroblast cells confirm biocompatibility at effective concentrations. Additionally, we examine G-TeaNPs' impact on the free-living protist Acanthamoeba castellanii. Both green tea extract and G-TeaNPs can reduce A. castellanii cell counts by 80%, but only at high concentrations. Microscopy revealed nanoparticle uptake by amoebae, causing intracellular accumulation and vacuolization, while green tea extract induced similar changes without uptake. Our findings highlight G-TeaNPs as safe, effective agents in phage/nanoparticle antibacterial formulations with dual antimicrobial and amoebicidal properties for therapeutic and environmental applications. KEYPOINTS: • Silver nanoparticles synthesized with tea extracts (G-TeaNPs) have a minimal effect on the tested viruses. • Combining G-TeaNP with bacteriophages offers new-generation antibacterial cocktails. • Green tea extracts and AgNPs present concentration-dependent anti-amoebic activity.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":"129"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-025-13526-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic resistance continues to rise, necessitating alternative strategies. Bacteriophages have emerged as promising natural antibacterial agents, offering a targeted approach to combating bacterial infections. Combining bacteriophages with nanoparticles presents a novel approach that could enhance antibacterial potency while reducing the risk of resistance. While phage/antibiotic cocktails are widely explored to enhance antibacterial efficacy and prevent resistance, research on phage/nanoparticle combinations remains limited. We explore the synergy between green tea extract-capped silver nanoparticles (G-TeaNPs) and bacteriophages in combating pathogenic bacteria (methicillin-resistant Staphylococcus aureus, Salmonella enterica). G-TeaNPs show minimal antiphage activity, ensuring compatibility in phage-NP formulations. These combinations significantly reduce bacterial counts in a short time (only 3 h), e.g., S. aureus survival is around 30% after incubation with just 0.001 mg/mL of G-TeaNPs, while G-TeaNPs and phages alone result in around 80% and 70% survival, respectively. Cytotoxicity tests against eukaryotic 3T3 NIH fibroblast cells confirm biocompatibility at effective concentrations. Additionally, we examine G-TeaNPs' impact on the free-living protist Acanthamoeba castellanii. Both green tea extract and G-TeaNPs can reduce A. castellanii cell counts by 80%, but only at high concentrations. Microscopy revealed nanoparticle uptake by amoebae, causing intracellular accumulation and vacuolization, while green tea extract induced similar changes without uptake. Our findings highlight G-TeaNPs as safe, effective agents in phage/nanoparticle antibacterial formulations with dual antimicrobial and amoebicidal properties for therapeutic and environmental applications. KEYPOINTS: • Silver nanoparticles synthesized with tea extracts (G-TeaNPs) have a minimal effect on the tested viruses. • Combining G-TeaNP with bacteriophages offers new-generation antibacterial cocktails. • Green tea extracts and AgNPs present concentration-dependent anti-amoebic activity.
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.