{"title":"SuperdropNet: A Stable and Accurate Machine Learning Proxy for Droplet-Based Cloud Microphysics","authors":"Shivani Sharma, David S. Greenberg","doi":"10.1029/2024MS004279","DOIUrl":null,"url":null,"abstract":"<p>Cloud microphysics has important consequences for climate and weather phenomena, and inaccurate representations can limit forecast accuracy. While atmospheric models increasingly resolve storms and clouds, the accuracy of the underlying microphysics remains limited by computationally expedient bulk moment schemes based on simplifying assumptions. Droplet-based Lagrangian schemes are more accurate but are underutilized due to their large computational overhead. Machine learning (ML) based schemes can bridge this gap by learning from vast droplet-based simulation data sets, but have so far struggled to match the accuracy and stability of bulk moment schemes. To address this challenge, we developed SuperdropNet, an ML-based emulator of the Lagrangian superdroplet simulations. To improve accuracy and stability, we employ multi-step autoregressive prediction during training, impose physical constraints, and carefully control stochasticity in the training data. Superdropnet predicted hydrometeor states and cloud-to-rain transition times more accurately than previous ML emulators, and matched or outperformed bulk moment schemes in many cases. We further carried out detailed analyses to reveal how multistep autoregressive training improves performance, and how the performance of SuperdropNet and other microphysical schemes hydrometeors' mass, number and size distribution. Together our results suggest that ML models can effectively emulate cloud microphysics, in a manner consistent with droplet-based simulations.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004279","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004279","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud microphysics has important consequences for climate and weather phenomena, and inaccurate representations can limit forecast accuracy. While atmospheric models increasingly resolve storms and clouds, the accuracy of the underlying microphysics remains limited by computationally expedient bulk moment schemes based on simplifying assumptions. Droplet-based Lagrangian schemes are more accurate but are underutilized due to their large computational overhead. Machine learning (ML) based schemes can bridge this gap by learning from vast droplet-based simulation data sets, but have so far struggled to match the accuracy and stability of bulk moment schemes. To address this challenge, we developed SuperdropNet, an ML-based emulator of the Lagrangian superdroplet simulations. To improve accuracy and stability, we employ multi-step autoregressive prediction during training, impose physical constraints, and carefully control stochasticity in the training data. Superdropnet predicted hydrometeor states and cloud-to-rain transition times more accurately than previous ML emulators, and matched or outperformed bulk moment schemes in many cases. We further carried out detailed analyses to reveal how multistep autoregressive training improves performance, and how the performance of SuperdropNet and other microphysical schemes hydrometeors' mass, number and size distribution. Together our results suggest that ML models can effectively emulate cloud microphysics, in a manner consistent with droplet-based simulations.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.