Synthesis of Metal-Modified Nanocellulose as a Biofilm Analogue for Biofilm Mimicry in Biomedical and Environmental Applications

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2025-05-30 DOI:10.1002/bip.70029
Darryl W. Taylor, A-Andrew D. Jones III
{"title":"Synthesis of Metal-Modified Nanocellulose as a Biofilm Analogue for Biofilm Mimicry in Biomedical and Environmental Applications","authors":"Darryl W. Taylor,&nbsp;A-Andrew D. Jones III","doi":"10.1002/bip.70029","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Bacterial biofilms are complex, multi-component structures consisting primarily of four key elements: polysaccharides, metal ions, proteins, and extracellular DNA. In our research, we specifically focus on the polysaccharide and metal ion components, which play a crucial role in determining the biofilm's mechanical properties. Polysaccharides provide the structural matrix, although metal ions, particularly divalent cations like calcium and cobalt, cross-link with the polysaccharides, thereby modulating the biofilm's rigidity and viscoelastic behavior. By introducing divalent cations into nanocellulose, we can replicate this natural cross-linking process, allowing us to finely tune the material's mechanical properties to more closely resemble those of bacterial biofilms. This approach not only enhances the accuracy of synthetic biofilm models over alginate hydrogels but also provides valuable insights into how biofilms maintain their structural integrity in various environments. Our findings indicate that nanocellulose exhibits mechanical properties closer to biofilms than alginate analogs, making it a suitable non-living control for biofilm studies. Furthermore, divalent nickel, followed by calcium and magnesium, demonstrate a closer mechanical mimicry to biofilms. In conclusion, this research shows the potential of nanocellulose as a versatile material for bacterial biofilm mimicry.</p>\n </div>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.70029","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial biofilms are complex, multi-component structures consisting primarily of four key elements: polysaccharides, metal ions, proteins, and extracellular DNA. In our research, we specifically focus on the polysaccharide and metal ion components, which play a crucial role in determining the biofilm's mechanical properties. Polysaccharides provide the structural matrix, although metal ions, particularly divalent cations like calcium and cobalt, cross-link with the polysaccharides, thereby modulating the biofilm's rigidity and viscoelastic behavior. By introducing divalent cations into nanocellulose, we can replicate this natural cross-linking process, allowing us to finely tune the material's mechanical properties to more closely resemble those of bacterial biofilms. This approach not only enhances the accuracy of synthetic biofilm models over alginate hydrogels but also provides valuable insights into how biofilms maintain their structural integrity in various environments. Our findings indicate that nanocellulose exhibits mechanical properties closer to biofilms than alginate analogs, making it a suitable non-living control for biofilm studies. Furthermore, divalent nickel, followed by calcium and magnesium, demonstrate a closer mechanical mimicry to biofilms. In conclusion, this research shows the potential of nanocellulose as a versatile material for bacterial biofilm mimicry.

Abstract Image

金属修饰纳米纤维素作为生物膜模拟物的合成及其在生物医学和环境中的应用
细菌生物膜是复杂的多组分结构,主要由四种关键元素组成:多糖、金属离子、蛋白质和细胞外DNA。在我们的研究中,我们特别关注多糖和金属离子成分,它们对生物膜的力学性能起着至关重要的作用。多糖提供了结构基质,尽管金属离子,特别是二价阳离子,如钙和钴,与多糖交联,从而调节生物膜的刚性和粘弹性行为。通过将二价阳离子引入纳米纤维素,我们可以复制这种自然交联过程,使我们能够精细地调整材料的机械性能,使其更接近细菌生物膜的机械性能。这种方法不仅提高了海藻酸盐水凝胶合成生物膜模型的准确性,而且为生物膜如何在各种环境中保持其结构完整性提供了有价值的见解。我们的研究结果表明,纳米纤维素比海藻酸盐类似物表现出更接近生物膜的机械特性,使其成为生物膜研究的合适非生物对照物。此外,二价镍,其次是钙和镁,表现出更接近生物膜的机械模仿。总之,这项研究显示了纳米纤维素作为细菌生物膜模拟的多功能材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信