Mayra Colardo, Noemi Martella, Michela Varone, Daniele Pensabene, Giuseppina Caretti, Gianluca Bianchini, Andrea Aramini, Marco Segatto
{"title":"Branched-Chain Amino Acids and Di-Alanine Supplementation Attenuates Muscle Atrophy in a Murine Model of Cancer Cachexia","authors":"Mayra Colardo, Noemi Martella, Michela Varone, Daniele Pensabene, Giuseppina Caretti, Gianluca Bianchini, Andrea Aramini, Marco Segatto","doi":"10.1111/apha.70067","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Cancer cachexia is a severe metabolic disorder leading to skeletal muscle atrophy. Muscle wasting is a major clinical problem in cachectic patients, as it limits the efficacy of chemotherapeutic treatments and worsens quality of life. Nutritional support based on branched-chain amino acids (BCAA) has been shown to be a promising approach to counteract cachexia-induced muscle atrophy, but its efficacy is still debated. Furthermore, the putative role of di-alanine (Di-Ala) supplementation has yet to be evaluated. The present study therefore sought to assess whether BCAA supplementation, alone or in combination with a Di-Ala peptide, could attenuate muscle wasting in a preclinical model of cancer cachexia.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>To this end, C26 tumor-bearing mice were administered BCAA supplementation, with or without Di-Ala. Body and muscle weights, as well as molecular, biochemical, and morphological analysis, were carried out to characterize prospective changes of markers involved in cachexia and muscle atrophy.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The main findings revealed that BCAA supplementation effectively prevented body weight loss and muscle atrophy. Of note, Di-Ala significantly amplified the effects of BCAA. These phenomena were found to be mediated by the suppression of pathways involved in protein catabolism.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Collectively, these results highlight that innovative formulations containing Di-Ala, capable of increasing BCAA bioavailability, may be efficacious in counteracting muscle atrophy, especially during mild-to-moderate cancer cachexia.</p>\n </section>\n </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 7","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.70067","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apha.70067","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim
Cancer cachexia is a severe metabolic disorder leading to skeletal muscle atrophy. Muscle wasting is a major clinical problem in cachectic patients, as it limits the efficacy of chemotherapeutic treatments and worsens quality of life. Nutritional support based on branched-chain amino acids (BCAA) has been shown to be a promising approach to counteract cachexia-induced muscle atrophy, but its efficacy is still debated. Furthermore, the putative role of di-alanine (Di-Ala) supplementation has yet to be evaluated. The present study therefore sought to assess whether BCAA supplementation, alone or in combination with a Di-Ala peptide, could attenuate muscle wasting in a preclinical model of cancer cachexia.
Methods
To this end, C26 tumor-bearing mice were administered BCAA supplementation, with or without Di-Ala. Body and muscle weights, as well as molecular, biochemical, and morphological analysis, were carried out to characterize prospective changes of markers involved in cachexia and muscle atrophy.
Results
The main findings revealed that BCAA supplementation effectively prevented body weight loss and muscle atrophy. Of note, Di-Ala significantly amplified the effects of BCAA. These phenomena were found to be mediated by the suppression of pathways involved in protein catabolism.
Conclusions
Collectively, these results highlight that innovative formulations containing Di-Ala, capable of increasing BCAA bioavailability, may be efficacious in counteracting muscle atrophy, especially during mild-to-moderate cancer cachexia.
期刊介绍:
Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.