Statistical Analysis of Nonlinear Interactions Between Chorus and Electron Cyclotron Harmonic Waves

IF 2.9 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Lixian Yang, Si Liu, Zhonglei Gao, Hongming Yang, Xiongjun Shang, Yang Gao, Fuliang Xiao
{"title":"Statistical Analysis of Nonlinear Interactions Between Chorus and Electron Cyclotron Harmonic Waves","authors":"Lixian Yang,&nbsp;Si Liu,&nbsp;Zhonglei Gao,&nbsp;Hongming Yang,&nbsp;Xiongjun Shang,&nbsp;Yang Gao,&nbsp;Fuliang Xiao","doi":"10.1029/2025JA034027","DOIUrl":null,"url":null,"abstract":"<p>Nonlinear wave-wave interactions are crucial for extending wave frequency ranges and redistributing energy, thereby influencing the magnetospheric dynamics. The interactions between chorus and electron cyclotron harmonic (ECH) waves can generate the ECH sidebands. Statistical analysis of Van Allen Probes data shows that these interactions primarily occur in the region of <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math> = 5.0<span></span><math>\n <semantics>\n <mrow>\n <mi>–</mi>\n </mrow>\n <annotation> $\\mbox{--}$</annotation>\n </semantics></math>6.0 and MLT = 23<span></span><math>\n <semantics>\n <mrow>\n <mi>–</mi>\n </mrow>\n <annotation> $\\mbox{--}$</annotation>\n </semantics></math>09 near the equator <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mo>|</mo>\n <mi>M</mi>\n <mi>L</mi>\n <mi>A</mi>\n <mi>T</mi>\n <mo>|</mo>\n <mo>&lt;</mo>\n <mn>5</mn>\n <mo>°</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(\\vert \\mathrm{M}\\mathrm{L}\\mathrm{A}\\mathrm{T}\\vert &lt; 5{}^{\\circ})$</annotation>\n </semantics></math>. As the AE index increases, the ECH sidebands occur over a wider region and their intensity grows. Moreover, the root-mean-square (RMS) amplitude of the ECH sideband <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>E</mi>\n <mrow>\n <mi>S</mi>\n <mo>-</mo>\n <mtext>RMS</mtext>\n </mrow>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({E}_{\\mathrm{S}\\mbox{-}\\text{RMS}}\\right)$</annotation>\n </semantics></math> is roughly in proportion to the square root of the product of that of the chorus <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>E</mi>\n <mrow>\n <mi>C</mi>\n <mo>-</mo>\n <mtext>RMS</mtext>\n </mrow>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({E}_{\\mathrm{C}\\mbox{-}\\text{RMS}}\\right)$</annotation>\n </semantics></math> and ECH <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>E</mi>\n <mrow>\n <mi>E</mi>\n <mo>-</mo>\n <mtext>RMS</mtext>\n </mrow>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({E}_{\\mathrm{E}\\mbox{-}\\text{RMS}}\\right)$</annotation>\n </semantics></math> waves. For over <span></span><math>\n <semantics>\n <mrow>\n <mn>95</mn>\n <mi>%</mi>\n </mrow>\n <annotation> $95\\%$</annotation>\n </semantics></math> of samples, the ratio <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mrow>\n <mi>S</mi>\n <mo>-</mo>\n <mtext>RMS</mtext>\n </mrow>\n </msub>\n <mo>/</mo>\n <msqrt>\n <mrow>\n <msub>\n <mi>E</mi>\n <mrow>\n <mi>C</mi>\n <mo>-</mo>\n <mtext>RMS</mtext>\n </mrow>\n </msub>\n <mo>∗</mo>\n <msub>\n <mi>E</mi>\n <mrow>\n <mi>E</mi>\n <mo>-</mo>\n <mtext>RMS</mtext>\n </mrow>\n </msub>\n </mrow>\n </msqrt>\n </mrow>\n <annotation> ${E}_{\\mathrm{S}\\mbox{-}\\text{RMS}}/\\sqrt{{E}_{\\mathrm{C}\\mbox{-}\\text{RMS}}\\ast {E}_{\\mathrm{E}\\mbox{-}\\text{RMS}}}$</annotation>\n </semantics></math> ranges from <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <msup>\n <mn>0</mn>\n <mrow>\n <mo>−</mo>\n <mn>1.6</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $1{0}^{-1.6}$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <msup>\n <mn>0</mn>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $1{0}^{-1}$</annotation>\n </semantics></math>. Using the typical parameters, we find that the ECH sidebands can effectively extend the energy range of resonant electrons down to <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>10 eV. This study reveals the global distribution of chorus-ECH interactions and the energy conversion efficiency in this nonlinear process.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JA034027","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear wave-wave interactions are crucial for extending wave frequency ranges and redistributing energy, thereby influencing the magnetospheric dynamics. The interactions between chorus and electron cyclotron harmonic (ECH) waves can generate the ECH sidebands. Statistical analysis of Van Allen Probes data shows that these interactions primarily occur in the region of L $L$  = 5.0 $\mbox{--}$ 6.0 and MLT = 23 $\mbox{--}$ 09 near the equator ( | M L A T | < 5 ° ) $(\vert \mathrm{M}\mathrm{L}\mathrm{A}\mathrm{T}\vert < 5{}^{\circ})$ . As the AE index increases, the ECH sidebands occur over a wider region and their intensity grows. Moreover, the root-mean-square (RMS) amplitude of the ECH sideband E S - RMS $\left({E}_{\mathrm{S}\mbox{-}\text{RMS}}\right)$ is roughly in proportion to the square root of the product of that of the chorus E C - RMS $\left({E}_{\mathrm{C}\mbox{-}\text{RMS}}\right)$ and ECH E E - RMS $\left({E}_{\mathrm{E}\mbox{-}\text{RMS}}\right)$ waves. For over 95 % $95\%$ of samples, the ratio E S - RMS / E C - RMS E E - RMS ${E}_{\mathrm{S}\mbox{-}\text{RMS}}/\sqrt{{E}_{\mathrm{C}\mbox{-}\text{RMS}}\ast {E}_{\mathrm{E}\mbox{-}\text{RMS}}}$ ranges from 1 0 1.6 $1{0}^{-1.6}$ to 1 0 1 $1{0}^{-1}$ . Using the typical parameters, we find that the ECH sidebands can effectively extend the energy range of resonant electrons down to ${\sim} $ 10 eV. This study reveals the global distribution of chorus-ECH interactions and the energy conversion efficiency in this nonlinear process.

副歌与电子回旋谐波非线性相互作用的统计分析
非线性波波相互作用对于波频率范围的扩展和能量的重新分配至关重要,从而影响磁层动力学。电子回旋谐波(ECH)与副歌波之间的相互作用可以产生电子回旋谐波的边带。对Van Allen探测器数据的统计分析表明,这些相互作用主要发生在赤道附近的L $L$ = 5.0 - $\mbox{--}$ 6.0和MLT = 23 - $\mbox{--}$ 09区域(| M L A T | &lt;5°)$(\vert \mathrm{M}\mathrm{L}\mathrm{A}\mathrm{T}\vert < 5{}^{\circ})$。随着声发射指数的增加,高强边带出现的范围越来越广,强度也越来越大。而且,ECH边带的均方根(RMS)振幅es - RMS $\left({E}_{\mathrm{S}\mbox{-}\text{RMS}}\right)$大致与合唱振幅乘积的平方根成比例E E E - RMS $\left({E}_{\mathrm{C}\mbox{-}\text{RMS}}\right)$和ECH E E - RMS$\left({E}_{\mathrm{E}\mbox{-}\text{RMS}}\right)$波浪。95岁以上 % $95\%$ of samples, the ratio E S - RMS / E C - RMS ∗ E E - RMS ${E}_{\mathrm{S}\mbox{-}\text{RMS}}/\sqrt{{E}_{\mathrm{C}\mbox{-}\text{RMS}}\ast {E}_{\mathrm{E}\mbox{-}\text{RMS}}}$ ranges from 1 0 − 1.6 $1{0}^{-1.6}$ to 1 0 − 1 $1{0}^{-1}$ . Using the typical parameters, we find that the ECH sidebands can effectively extend the energy range of resonant electrons down to ∼ ${\sim} $ 10 eV. This study reveals the global distribution of chorus-ECH interactions and the energy conversion efficiency in this nonlinear process.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信