Fuyu Chen, Heng Li, Chengdong Zhen, Guimei Lin, Bingtao Tang, Yanbin Shi, Li Wang, Jinwei Qiao, Xuelin Li
{"title":"Intelligent Sensing Switches in Drug Delivery Systems: Mechanisms, Material Selection, and Future Perspectives","authors":"Fuyu Chen, Heng Li, Chengdong Zhen, Guimei Lin, Bingtao Tang, Yanbin Shi, Li Wang, Jinwei Qiao, Xuelin Li","doi":"10.1002/jbm.a.37938","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The intelligence and controllability of drug delivery systems (DDS) are crucial for enhancing therapeutic efficacy and minimizing side effects. Among these, DDS responsive switches play a pivotal role in precisely regulating the timing and spatial distribution of drug release in response to specific physiological environments within the body or external stimuli. Based on the origin of stimuli, they can be categorized into endogenous and exogenous stimuli. This paper reviews various types of stimulus-responsive switches, including dual-stimulus responsive switches, and elaborates on the drug release mechanisms of each intelligent switch. It summarizes the advantages and limitations of different stimulus-responsive systems, highlights the properties of commonly used temperature-sensitive materials, and discusses the applications of popular nano-engineered materials in pH and electromagnetic-responsive switches. Finally, the paper provides an outlook on the future of DDS, focusing on achieving more precise control, as well as ensuring clinical stability and reliability.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37938","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The intelligence and controllability of drug delivery systems (DDS) are crucial for enhancing therapeutic efficacy and minimizing side effects. Among these, DDS responsive switches play a pivotal role in precisely regulating the timing and spatial distribution of drug release in response to specific physiological environments within the body or external stimuli. Based on the origin of stimuli, they can be categorized into endogenous and exogenous stimuli. This paper reviews various types of stimulus-responsive switches, including dual-stimulus responsive switches, and elaborates on the drug release mechanisms of each intelligent switch. It summarizes the advantages and limitations of different stimulus-responsive systems, highlights the properties of commonly used temperature-sensitive materials, and discusses the applications of popular nano-engineered materials in pH and electromagnetic-responsive switches. Finally, the paper provides an outlook on the future of DDS, focusing on achieving more precise control, as well as ensuring clinical stability and reliability.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.