{"title":"Optimized Consensus Group Selection Focused on Node Transmission Delay in Sharding Blockchains","authors":"Liping Tao;Yang Lu;Yuqi Fan;Chee Wei Tan;Zhen Wei","doi":"10.1109/TCSS.2024.3514186","DOIUrl":null,"url":null,"abstract":"Sharding presents an enticing path toward improving blockchain scalability. However, the consensus mechanism within individual shards faces mounting security challenges due to the restricted number of consensus nodes and the reliance on conventional, unchanging nodes for consensus. Common strategies to enhance shard consensus security often involve increasing the number of consensus nodes per shard. While effective in bolstering security, this approach also leads to a notable rise in consensus delay within each shard, potentially offsetting the scalability advantages of sharding. Hence, it becomes imperative to strategically select nodes to form dedicated consensus groups for each shard. These groups should not only enhance shard consensus security but also do so without exacerbating consensus delay. In this article, we propose a novel consensus group selection based on transmission delay between nodes (CGSTD) to address this challenge, with the goal of minimizing the overall consensus delay across the system. CGSTD intelligently selects nodes from various shards to form distinct consensus groups for each shard, thereby enhancing shard security while maintaining optimal system-wide consensus efficiency. We conduct a rigorous theoretical analysis to evaluate the security properties of CGSTD and derive approximation ratios under various operational scenarios. Simulation results validate the superior performance of CGSTD compared to baseline algorithms, showcasing reductions in total consensus delay, mitigated increases in shard-specific delay, optimized block storage utilization per node, and streamlined participation of nodes in consensus groups.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 3","pages":"1052-1067"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10805540/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sharding presents an enticing path toward improving blockchain scalability. However, the consensus mechanism within individual shards faces mounting security challenges due to the restricted number of consensus nodes and the reliance on conventional, unchanging nodes for consensus. Common strategies to enhance shard consensus security often involve increasing the number of consensus nodes per shard. While effective in bolstering security, this approach also leads to a notable rise in consensus delay within each shard, potentially offsetting the scalability advantages of sharding. Hence, it becomes imperative to strategically select nodes to form dedicated consensus groups for each shard. These groups should not only enhance shard consensus security but also do so without exacerbating consensus delay. In this article, we propose a novel consensus group selection based on transmission delay between nodes (CGSTD) to address this challenge, with the goal of minimizing the overall consensus delay across the system. CGSTD intelligently selects nodes from various shards to form distinct consensus groups for each shard, thereby enhancing shard security while maintaining optimal system-wide consensus efficiency. We conduct a rigorous theoretical analysis to evaluate the security properties of CGSTD and derive approximation ratios under various operational scenarios. Simulation results validate the superior performance of CGSTD compared to baseline algorithms, showcasing reductions in total consensus delay, mitigated increases in shard-specific delay, optimized block storage utilization per node, and streamlined participation of nodes in consensus groups.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.