{"title":"The Face of Deception: The Impact of AI-Generated Photos on Malicious Social Bots","authors":"Maxim Kolomeets;Han Wu;Lei Shi;Aad van Moorsel","doi":"10.1109/TCSS.2024.3461328","DOIUrl":null,"url":null,"abstract":"In this research, we investigate the influence of utilizing artificial intelligence (AI)-generated photographs on malicious bots that engage in disinformation, fraud, reputation manipulation, and other types of malicious activity on social networks. Our research aims to compare the performance metrics of social bots that employ AI photos with those that use other types of photographs. To accomplish this, we analyzed a dataset with 13 748 measurements of 11 423 bots from the VK social network and identified 73 cases where bots employed generative adversarial network (GAN)-photos and 84 cases where bots employed diffusion or transformers photos. We conducted a qualitative comparison of these bots using metrics such as price, survival rate, quality, speed, and human trust. Our study findings indicate that bots that use AI-photos exhibit less danger and lower levels of sophistication compared to other types: AI-enhanced bots are less expensive, less popular on exchange platforms, of inferior quality, less likely to be operated by humans, and, as a consequence, faster and more susceptible to being blocked by social networks. We also did not observe any significant difference between GAN-based and diffusion/transformers-based bots, indicating that diffusion/transformers models did not contribute to increased bot sophistication compared to GAN models. Our contributions include a proposed methodology for evaluating the impact of photos on bot sophistication, along with a publicly available dataset for other researchers to study and analyze bots. Our research findings suggest a contradiction to theoretical expectations: in practice, bots using AI-generated photos pose less danger.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 3","pages":"1080-1091"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10712168/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, we investigate the influence of utilizing artificial intelligence (AI)-generated photographs on malicious bots that engage in disinformation, fraud, reputation manipulation, and other types of malicious activity on social networks. Our research aims to compare the performance metrics of social bots that employ AI photos with those that use other types of photographs. To accomplish this, we analyzed a dataset with 13 748 measurements of 11 423 bots from the VK social network and identified 73 cases where bots employed generative adversarial network (GAN)-photos and 84 cases where bots employed diffusion or transformers photos. We conducted a qualitative comparison of these bots using metrics such as price, survival rate, quality, speed, and human trust. Our study findings indicate that bots that use AI-photos exhibit less danger and lower levels of sophistication compared to other types: AI-enhanced bots are less expensive, less popular on exchange platforms, of inferior quality, less likely to be operated by humans, and, as a consequence, faster and more susceptible to being blocked by social networks. We also did not observe any significant difference between GAN-based and diffusion/transformers-based bots, indicating that diffusion/transformers models did not contribute to increased bot sophistication compared to GAN models. Our contributions include a proposed methodology for evaluating the impact of photos on bot sophistication, along with a publicly available dataset for other researchers to study and analyze bots. Our research findings suggest a contradiction to theoretical expectations: in practice, bots using AI-generated photos pose less danger.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.