Anomaly Detection on Attributed Networks via Multiview and Multiscale Contrastive Learning

IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS
Shuxin Qin;Yongcan Luo;Jing Zhu;Gaofeng Tao;Jingya Zheng;Zhongjun Ma
{"title":"Anomaly Detection on Attributed Networks via Multiview and Multiscale Contrastive Learning","authors":"Shuxin Qin;Yongcan Luo;Jing Zhu;Gaofeng Tao;Jingya Zheng;Zhongjun Ma","doi":"10.1109/TCSS.2024.3514148","DOIUrl":null,"url":null,"abstract":"Detecting abnormal nodes from attributed networks plays an important role in various applications, including cybersecurity, finance, and social networks. Most existing methods focus on learning different scales of graphs or using augmented data to improve the quality of feature representation. However, the performance is limited due to two critical problems. First, the high sensitivity of attributed networks makes it uncontrollable and uncertain to use conventional methods for data augmentation, leading to limited improvement in representation and generalization capabilities. Second, under the unsupervised paradigm, anomalous nodes mixed in the training data may interfere with the learning of normal patterns and weaken the discrimination ability. In this work, we propose a novel multiview and multiscale contrastive learning framework to address these two issues. Specifically, a network augmentation method based on parameter perturbation is introduced to generate augmented views for both node–node and node–subgraph level contrast branches. Then, cross-view graph contrastive learning is employed to improve the representation without the need for augmented data. We also provide a cycle training strategy where normal samples detected in the former step are collected for an additional training step. In this way, the ability to learn normal patterns is enhanced. Extensive experiments on six benchmark datasets demonstrate that our method outperforms the existing state-of-the-art baselines.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 3","pages":"1038-1051"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10805093/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting abnormal nodes from attributed networks plays an important role in various applications, including cybersecurity, finance, and social networks. Most existing methods focus on learning different scales of graphs or using augmented data to improve the quality of feature representation. However, the performance is limited due to two critical problems. First, the high sensitivity of attributed networks makes it uncontrollable and uncertain to use conventional methods for data augmentation, leading to limited improvement in representation and generalization capabilities. Second, under the unsupervised paradigm, anomalous nodes mixed in the training data may interfere with the learning of normal patterns and weaken the discrimination ability. In this work, we propose a novel multiview and multiscale contrastive learning framework to address these two issues. Specifically, a network augmentation method based on parameter perturbation is introduced to generate augmented views for both node–node and node–subgraph level contrast branches. Then, cross-view graph contrastive learning is employed to improve the representation without the need for augmented data. We also provide a cycle training strategy where normal samples detected in the former step are collected for an additional training step. In this way, the ability to learn normal patterns is enhanced. Extensive experiments on six benchmark datasets demonstrate that our method outperforms the existing state-of-the-art baselines.
基于多视角和多尺度对比学习的属性网络异常检测
从属性网络中检测异常节点在网络安全、金融、社交网络等应用中发挥着重要作用。大多数现有的方法都集中在学习不同尺度的图或使用增强数据来提高特征表示的质量。然而,由于两个关键问题,性能受到限制。首先,属性网络的高灵敏度使得使用传统方法进行数据增强具有不可控和不确定性,导致表征和泛化能力的提高有限。其次,在无监督范式下,混杂在训练数据中的异常节点可能会干扰正常模式的学习,削弱识别能力。在这项工作中,我们提出了一个新的多视角和多尺度对比学习框架来解决这两个问题。具体来说,提出了一种基于参数摄动的网络增强方法来生成节点-节点级和节点-子图级对比分支的增强视图。然后,在不需要增强数据的情况下,采用交叉视图对比学习来改进表示。我们还提供了一个循环训练策略,在前一步中检测到的正常样本被收集用于额外的训练步骤。通过这种方式,学习正常模式的能力得到了增强。在六个基准数据集上进行的大量实验表明,我们的方法优于现有的最先进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computational Social Systems
IEEE Transactions on Computational Social Systems Social Sciences-Social Sciences (miscellaneous)
CiteScore
10.00
自引率
20.00%
发文量
316
期刊介绍: IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信