{"title":"Preserving Social Relationship Privacy via the Exponential Mechanism of Personalized Differential Privacy","authors":"Jiawei Shen;Junfeng Tian;Ziyuan Wang;Qi Zhu","doi":"10.1109/TCSS.2024.3508744","DOIUrl":null,"url":null,"abstract":"Presently, the majority of social networking platforms tend to outsource the analysis of social relationship data to third-party companies. Existing methods, which generally aim to protect social relationships by erasing friendship links or introducing uniform noise into datasets, do not take into account the risk of inference attacks or the actual privacy needs of users. To address these concerns, we present a novel method, named exponential mechanism of personalized difference privacy (EPDP), for preserving the privacy of social relationships, based on the EPDP. We develop specific social relationship indices to group friendship links and divided these links into distinct privacy levels, each with a unique privacy budget. Then, we select representative elements from each group using sampling and the exponential mechanism to generalize the original datasets, ensuring compliance with personalized difference privacy principles. Metrics for privacy and utility assessment are devised to evaluate method performance. Experimental results reveal that EPDP offers superior utility compared to uniform differential privacy (UDP) and provides better privacy protection than the state-of-the-art. Moreover, we explore the impact of various parameters on data utility. This article marks the pioneering effort to introduce a privacy-preserving method based on the exponential mechanism for the safeguarding of social relationships.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 3","pages":"1164-1180"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10789188/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Presently, the majority of social networking platforms tend to outsource the analysis of social relationship data to third-party companies. Existing methods, which generally aim to protect social relationships by erasing friendship links or introducing uniform noise into datasets, do not take into account the risk of inference attacks or the actual privacy needs of users. To address these concerns, we present a novel method, named exponential mechanism of personalized difference privacy (EPDP), for preserving the privacy of social relationships, based on the EPDP. We develop specific social relationship indices to group friendship links and divided these links into distinct privacy levels, each with a unique privacy budget. Then, we select representative elements from each group using sampling and the exponential mechanism to generalize the original datasets, ensuring compliance with personalized difference privacy principles. Metrics for privacy and utility assessment are devised to evaluate method performance. Experimental results reveal that EPDP offers superior utility compared to uniform differential privacy (UDP) and provides better privacy protection than the state-of-the-art. Moreover, we explore the impact of various parameters on data utility. This article marks the pioneering effort to introduce a privacy-preserving method based on the exponential mechanism for the safeguarding of social relationships.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.