Advances in numerical modeling and experimental insights for hydrogen storage systems: A comprehensive and critical review

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Ayoub Aitakka Nalla , Mourad Nachtane , Xiaobin Gu , Mustapha El Alami , Ayoub Gounni
{"title":"Advances in numerical modeling and experimental insights for hydrogen storage systems: A comprehensive and critical review","authors":"Ayoub Aitakka Nalla ,&nbsp;Mourad Nachtane ,&nbsp;Xiaobin Gu ,&nbsp;Mustapha El Alami ,&nbsp;Ayoub Gounni","doi":"10.1016/j.est.2025.117206","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen storage plays a pivotal role in enabling the transition to low-carbon energy systems, supporting renewable integration, transportation, and industrial decarbonization. While numerous studies have examined specific storage technologies, a comprehensive and structured synthesis across numerical and experimental approaches remains lacking. This review systematically categorizes and analyzes over 90 recent contributions, covering gaseous (30 MPa to 70 MPa), liquid (cryogenic at −253 °C), and solid (e.g., LaNi<sub>5</sub>, Mg-based alloys) panning gaseous, liquid, and solid hydrogen storage. Emphasis is placed on advanced modeling methods such as computational fluid dynamics (CFD), finite element analysis (FEA), and artificial intelligence (AI) as well as experimental strategies employed to validate and optimize these technologies. The review highlights key parameters influencing storage performance, including thermal management, material behavior, structural integrity, and system integration. It also outlines the growing role of AI in predictive maintenance and real-time optimization through digital twin frameworks. By critically comparing modeling tools and experimental findings, this paper identifies existing research gaps and proposes integrated, multi-scale approaches for future hydrogen storage development.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"128 ","pages":"Article 117206"},"PeriodicalIF":8.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X2501919X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen storage plays a pivotal role in enabling the transition to low-carbon energy systems, supporting renewable integration, transportation, and industrial decarbonization. While numerous studies have examined specific storage technologies, a comprehensive and structured synthesis across numerical and experimental approaches remains lacking. This review systematically categorizes and analyzes over 90 recent contributions, covering gaseous (30 MPa to 70 MPa), liquid (cryogenic at −253 °C), and solid (e.g., LaNi5, Mg-based alloys) panning gaseous, liquid, and solid hydrogen storage. Emphasis is placed on advanced modeling methods such as computational fluid dynamics (CFD), finite element analysis (FEA), and artificial intelligence (AI) as well as experimental strategies employed to validate and optimize these technologies. The review highlights key parameters influencing storage performance, including thermal management, material behavior, structural integrity, and system integration. It also outlines the growing role of AI in predictive maintenance and real-time optimization through digital twin frameworks. By critically comparing modeling tools and experimental findings, this paper identifies existing research gaps and proposes integrated, multi-scale approaches for future hydrogen storage development.
氢存储系统的数值模拟和实验见解的进展:一个全面和关键的评论
氢储存在实现向低碳能源系统过渡、支持可再生能源整合、运输和工业脱碳方面发挥着关键作用。虽然许多研究已经对特定的存储技术进行了研究,但在数值和实验方法之间仍然缺乏全面和结构化的综合。这篇综述系统地分类和分析了90多个最近的贡献,包括气体(30 MPa至70 MPa),液体(- 253°C低温)和固体(例如LaNi5, mg基合金),气体,液体和固体氢储存。重点放在先进的建模方法,如计算流体动力学(CFD)、有限元分析(FEA)和人工智能(AI),以及用于验证和优化这些技术的实验策略。这篇综述强调了影响存储性能的关键参数,包括热管理、材料性能、结构完整性和系统集成。它还概述了人工智能在通过数字孪生框架进行预测性维护和实时优化方面日益增长的作用。通过严格比较建模工具和实验结果,本文确定了现有的研究差距,并为未来的储氢发展提出了综合的、多尺度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信