Identifying storytelling in job interviews using deep learning

IF 5.8 Q1 PSYCHOLOGY, EXPERIMENTAL
Elisabeth Germanier , Mutian He , Amina Mardiyyah Rufai , Philip N. Garner , Adrian Bangerter , Laetitia A. Renier , Marianne Schmid Mast , Koralie Orji
{"title":"Identifying storytelling in job interviews using deep learning","authors":"Elisabeth Germanier ,&nbsp;Mutian He ,&nbsp;Amina Mardiyyah Rufai ,&nbsp;Philip N. Garner ,&nbsp;Adrian Bangerter ,&nbsp;Laetitia A. Renier ,&nbsp;Marianne Schmid Mast ,&nbsp;Koralie Orji","doi":"10.1016/j.chbr.2025.100688","DOIUrl":null,"url":null,"abstract":"<div><div>Structured interviews often include past-behavior questions inviting applicants to recount a past work experience. While optimal responses to these questions should take the form of a story, applicants struggle to produce them extemporaneously. Asynchronous video interviews (AVIs) present new opportunities for job interview coaching, which can incorporate artificial intelligence to analyze audio-recorded responses and deliver personalized feedback. We explore the potential of audio-based deep-learning models to identify storytelling and other, sub-optimal responses (pseudo-stories, decontextualized self-descriptions) from interview audio recordings. Using data from 254 mock interviews featuring three past-behavior questions, we developed models to determine the utterance type, considering different scenarios and labeling schemes of varying granularity. We further applied multiple techniques to improve the model accuracy. Findings show that our models achieve satisfactory performance when enhanced with audio information and enriched with longer context (best accuracy: 77.67%) However, providing paralinguistic cues from the audio recordings did not help improve the models’ performance. We discuss the results, implications, and future research directions.</div></div>","PeriodicalId":72681,"journal":{"name":"Computers in human behavior reports","volume":"19 ","pages":"Article 100688"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in human behavior reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451958825001034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Structured interviews often include past-behavior questions inviting applicants to recount a past work experience. While optimal responses to these questions should take the form of a story, applicants struggle to produce them extemporaneously. Asynchronous video interviews (AVIs) present new opportunities for job interview coaching, which can incorporate artificial intelligence to analyze audio-recorded responses and deliver personalized feedback. We explore the potential of audio-based deep-learning models to identify storytelling and other, sub-optimal responses (pseudo-stories, decontextualized self-descriptions) from interview audio recordings. Using data from 254 mock interviews featuring three past-behavior questions, we developed models to determine the utterance type, considering different scenarios and labeling schemes of varying granularity. We further applied multiple techniques to improve the model accuracy. Findings show that our models achieve satisfactory performance when enhanced with audio information and enriched with longer context (best accuracy: 77.67%) However, providing paralinguistic cues from the audio recordings did not help improve the models’ performance. We discuss the results, implications, and future research directions.
利用深度学习识别求职面试中的故事
结构化面试通常包括过去的行为问题,邀请应聘者讲述过去的工作经历。虽然对这些问题的最佳回答应该以故事的形式出现,但求职者很难即兴地说出这些故事。异步视频面试(AVIs)为求职面试指导提供了新的机会,它可以结合人工智能来分析录音回答并提供个性化反馈。我们探索了基于音频的深度学习模型的潜力,以从采访录音中识别讲故事和其他次优反应(伪故事,非语境化的自我描述)。使用254个模拟访谈的数据,包括三个过去行为问题,我们开发了模型来确定话语类型,考虑不同的场景和不同粒度的标记方案。我们进一步应用多种技术来提高模型的精度。结果表明,我们的模型在音频信息的增强和更长的上下文的丰富下获得了令人满意的性能(最高准确率为77.67%)。然而,从录音中提供副语言线索并不能帮助提高模型的性能。我们讨论了结果、启示和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信