Landon J Getz , Pramalkumar H Patel , Karen L Maxwell
{"title":"A solution to the postantibiotic era: phages as precision medicine","authors":"Landon J Getz , Pramalkumar H Patel , Karen L Maxwell","doi":"10.1016/j.mib.2025.102613","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotic-resistant bacterial infections pose a significant global health challenge. Phage therapy provides a promising alternative to antibiotics that enables the specific targeting of pathogenic bacteria while preserving the healthy microbiome. Recent advances in genetic engineering, synthetic biology, and artificial intelligence have rekindled interest in phage therapy, as they move phages into the realm of precision medicine. Engineered phages can be customized to have a broader host range, encode counter-defenses that overcome bacterial immune systems, or express other proteins that modulate the bacterial host to their advantage. Innovations in artificial intelligence and machine learning promise to speed up the identification of optimal phage candidates and create tailored cocktails for individualized therapies — advances that will transform phage therapy and provide a solution to the antibiotic resistance crisis.</div></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"86 ","pages":"Article 102613"},"PeriodicalIF":5.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527425000359","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic-resistant bacterial infections pose a significant global health challenge. Phage therapy provides a promising alternative to antibiotics that enables the specific targeting of pathogenic bacteria while preserving the healthy microbiome. Recent advances in genetic engineering, synthetic biology, and artificial intelligence have rekindled interest in phage therapy, as they move phages into the realm of precision medicine. Engineered phages can be customized to have a broader host range, encode counter-defenses that overcome bacterial immune systems, or express other proteins that modulate the bacterial host to their advantage. Innovations in artificial intelligence and machine learning promise to speed up the identification of optimal phage candidates and create tailored cocktails for individualized therapies — advances that will transform phage therapy and provide a solution to the antibiotic resistance crisis.
期刊介绍:
Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year:
Host-microbe interactions: bacteria
Cell regulation
Environmental microbiology
Host-microbe interactions: fungi/parasites/viruses
Antimicrobials
Microbial systems biology
Growth and development: eukaryotes/prokaryotes