Rotational control of droplet impact behavior on a soft substrate

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Yulin Huang , Hongrui Yang , Rui Wu , Weijian Wang , Mengyuan Gao , Xi Wu , Chaofeng Lü , Guannan Wang
{"title":"Rotational control of droplet impact behavior on a soft substrate","authors":"Yulin Huang ,&nbsp;Hongrui Yang ,&nbsp;Rui Wu ,&nbsp;Weijian Wang ,&nbsp;Mengyuan Gao ,&nbsp;Xi Wu ,&nbsp;Chaofeng Lü ,&nbsp;Guannan Wang","doi":"10.1016/j.ijmecsci.2025.110369","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding droplet dynamics is essential for advancing biotechnology and material science. However, studies investigating droplet behavior on rotating soft substrates remain limited. This work addresses this gap by exploring the underlying physical mechanism of deionized water droplet dynamics and transport on rotating soft substrates, providing both experimental insights and theoretical scaling formulations. Unlike research on hard substrates, we introduce a modified maximum spreading factor <span><math><mrow><msub><mi>β</mi><mi>s</mi></msub><mo>∼</mo><msup><mrow><mo>(</mo><mrow><mtext>We</mtext><mo>−</mo><mi>k</mi></mrow><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></math></span>for droplets impacting stationary soft substrates by incorporating substrate flexibility, which aligns precisely with our experimental data. For rotating soft substrates, the interplay between flexibility and air viscosity results in highly asymmetric wetting behaviors. Through theoretical and experimental analyses, we establish a scaling law for the contact area <span><math><mrow><msup><mrow><mo>(</mo><mrow><msub><mi>β</mi><mrow><mi>max</mi><mo>−</mo><mi>T</mi></mrow></msub><msub><mi>β</mi><mrow><mi>max</mi><mo>−</mo><mi>R</mi></mrow></msub></mrow><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>∼</mo><mi>C</mi><msup><mrow><mi>a</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>6</mn></mrow></msup><msup><mrow><mo>(</mo><mrow><mtext>We</mtext><mo>−</mo><mi>k</mi></mrow><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></math></span>and an inverse scaling law <span><math><mrow><msub><mi>τ</mi><mi>s</mi></msub><mo>∼</mo><mi>C</mi><msup><mrow><mi>a</mi></mrow><mrow><mrow><mo>−</mo><mn>1</mn></mrow><mo>/</mo><mn>6</mn></mrow></msup><msup><mrow><mo>(</mo><mrow><mtext>We</mtext><mo>−</mo><mi>k</mi></mrow><mo>)</mo></mrow><mrow><mrow><mo>−</mo><mn>1</mn></mrow><mo>/</mo><mn>4</mn></mrow></msup></mrow></math></span> for the spreading time. The use of rotating substrates can reduce spreading time by as much as 24 %, showing its potential for enhanced droplet control. Furthermore, we identify a critical rotational speed Bo<sub>r,c</sub> that triggers two distinct droplet impact behaviors, independent of impact velocity. These findings provide insights for control and directional transport in droplet screening and sorting applications.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"299 ","pages":"Article 110369"},"PeriodicalIF":7.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325004552","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding droplet dynamics is essential for advancing biotechnology and material science. However, studies investigating droplet behavior on rotating soft substrates remain limited. This work addresses this gap by exploring the underlying physical mechanism of deionized water droplet dynamics and transport on rotating soft substrates, providing both experimental insights and theoretical scaling formulations. Unlike research on hard substrates, we introduce a modified maximum spreading factor βs(Wek)1/4for droplets impacting stationary soft substrates by incorporating substrate flexibility, which aligns precisely with our experimental data. For rotating soft substrates, the interplay between flexibility and air viscosity results in highly asymmetric wetting behaviors. Through theoretical and experimental analyses, we establish a scaling law for the contact area (βmaxTβmaxR)1/2Ca1/6(Wek)1/4and an inverse scaling law τsCa1/6(Wek)1/4 for the spreading time. The use of rotating substrates can reduce spreading time by as much as 24 %, showing its potential for enhanced droplet control. Furthermore, we identify a critical rotational speed Bor,c that triggers two distinct droplet impact behaviors, independent of impact velocity. These findings provide insights for control and directional transport in droplet screening and sorting applications.
软基材上液滴冲击行为的旋转控制
了解液滴动力学对于推进生物技术和材料科学至关重要。然而,对旋转软基上液滴行为的研究仍然有限。本研究通过探索去离子水在旋转软基上的动力学和输运的潜在物理机制来解决这一问题,提供了实验见解和理论尺度公式。与硬基板的研究不同,我们引入了一个修正的最大扩散因子βs ~ (we−k)1/4,通过结合基板的灵活性来影响固定软基板的液滴,这与我们的实验数据完全一致。对于旋转的软基板,柔韧性和空气粘度之间的相互作用导致了高度不对称的润湿行为。通过理论和实验分析,我们建立了接触面积(βmax−Tβmax−R)1/2 ~ Ca1/6(we−k)1/4的标度律和扩散时间τs ~ Ca−1/6(we−k)−1/4的逆标度律。使用旋转基板可以减少多达24%的扩散时间,显示其增强液滴控制的潜力。此外,我们确定了一个临界转速Bor,c,它触发两种不同的液滴撞击行为,与撞击速度无关。这些发现为液滴筛选和分选应用中的控制和定向输送提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信