Strengthening of hot-rolled S355 steel I-section beams using WAAM high strength steel

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Jiachi Yang, M. Ahmer Wadee, Leroy Gardner
{"title":"Strengthening of hot-rolled S355 steel I-section beams using WAAM high strength steel","authors":"Jiachi Yang,&nbsp;M. Ahmer Wadee,&nbsp;Leroy Gardner","doi":"10.1016/j.tws.2025.113437","DOIUrl":null,"url":null,"abstract":"<div><div>An experimental investigation to assess the major-axis flexural behaviour of 12 hot-rolled S355 steel I-section beams strengthened by the addition of high strength steel (HSS) through wire arc additive manufacturing (WAAM) is presented. The geometry of the beam specimens was obtained by means of 3D laser scanning. The mechanical properties of both the hot-rolled and the WAAM steel were determined through monotonic tensile testing. Physical testing of the strengthened beam specimens was conducted. The results showed that the WAAM strengthening led to dramatic increases in bending resistances of between 35% and 80% under four-point bending, and of between 30% and 85% under three-point bending, for increases in mass of between just 5% and 15% respectively. At the same time, the specimens exhibited good ductility, despite the high strength of the WAAM additions. The presented experimental results, which are the first of their kind, successfully demonstrate the applicability of the proposed strengthening approach for both new and retrofitted steel beams, and the game-changing potential for enhancements in structural efficiency and reductions in embodied carbon in the construction industry.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"215 ","pages":"Article 113437"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125005300","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

An experimental investigation to assess the major-axis flexural behaviour of 12 hot-rolled S355 steel I-section beams strengthened by the addition of high strength steel (HSS) through wire arc additive manufacturing (WAAM) is presented. The geometry of the beam specimens was obtained by means of 3D laser scanning. The mechanical properties of both the hot-rolled and the WAAM steel were determined through monotonic tensile testing. Physical testing of the strengthened beam specimens was conducted. The results showed that the WAAM strengthening led to dramatic increases in bending resistances of between 35% and 80% under four-point bending, and of between 30% and 85% under three-point bending, for increases in mass of between just 5% and 15% respectively. At the same time, the specimens exhibited good ductility, despite the high strength of the WAAM additions. The presented experimental results, which are the first of their kind, successfully demonstrate the applicability of the proposed strengthening approach for both new and retrofitted steel beams, and the game-changing potential for enhancements in structural efficiency and reductions in embodied carbon in the construction industry.
采用WAAM高强度钢对S355型钢热轧工字钢进行加固
通过电弧增材制造(WAAM)对12根添加高强度钢(HSS)的S355型钢热轧工字截面梁进行了主轴弯曲性能的试验研究。采用三维激光扫描的方法获得了光束试样的几何形状。通过单调拉伸试验确定了热轧钢和WAAM钢的力学性能。对加固梁试件进行了物理试验。结果表明,在四点弯曲条件下,WAAM的强度增加了35%至80%,三点弯曲条件下,强度增加了30%至85%,而质量增加仅为5%至15%。同时,尽管添加了高强度的WAAM,试件仍表现出良好的延性。所提出的实验结果是同类实验中的第一个,成功地证明了所提出的加固方法对新钢梁和改造钢梁的适用性,以及在建筑行业中提高结构效率和减少隐含碳的改变游戏规则的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信