{"title":"Strengthening of hot-rolled S355 steel I-section beams using WAAM high strength steel","authors":"Jiachi Yang, M. Ahmer Wadee, Leroy Gardner","doi":"10.1016/j.tws.2025.113437","DOIUrl":null,"url":null,"abstract":"<div><div>An experimental investigation to assess the major-axis flexural behaviour of 12 hot-rolled S355 steel I-section beams strengthened by the addition of high strength steel (HSS) through wire arc additive manufacturing (WAAM) is presented. The geometry of the beam specimens was obtained by means of 3D laser scanning. The mechanical properties of both the hot-rolled and the WAAM steel were determined through monotonic tensile testing. Physical testing of the strengthened beam specimens was conducted. The results showed that the WAAM strengthening led to dramatic increases in bending resistances of between 35% and 80% under four-point bending, and of between 30% and 85% under three-point bending, for increases in mass of between just 5% and 15% respectively. At the same time, the specimens exhibited good ductility, despite the high strength of the WAAM additions. The presented experimental results, which are the first of their kind, successfully demonstrate the applicability of the proposed strengthening approach for both new and retrofitted steel beams, and the game-changing potential for enhancements in structural efficiency and reductions in embodied carbon in the construction industry.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"215 ","pages":"Article 113437"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125005300","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
An experimental investigation to assess the major-axis flexural behaviour of 12 hot-rolled S355 steel I-section beams strengthened by the addition of high strength steel (HSS) through wire arc additive manufacturing (WAAM) is presented. The geometry of the beam specimens was obtained by means of 3D laser scanning. The mechanical properties of both the hot-rolled and the WAAM steel were determined through monotonic tensile testing. Physical testing of the strengthened beam specimens was conducted. The results showed that the WAAM strengthening led to dramatic increases in bending resistances of between 35% and 80% under four-point bending, and of between 30% and 85% under three-point bending, for increases in mass of between just 5% and 15% respectively. At the same time, the specimens exhibited good ductility, despite the high strength of the WAAM additions. The presented experimental results, which are the first of their kind, successfully demonstrate the applicability of the proposed strengthening approach for both new and retrofitted steel beams, and the game-changing potential for enhancements in structural efficiency and reductions in embodied carbon in the construction industry.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.