{"title":"Passive drag reduction of hyperloop pod by ventilation ducts","authors":"Khashayar Kanaanizade , Massoud Tatar , Juan Guzman-Inigo , Mehran Masdari","doi":"10.1016/j.ijmecsci.2025.110405","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the applicability and efficiency of ventilation duct (VD) as a novel passive drag reduction method for Hyperloop pod were investigated using 3-D numerical simulations. Ventilation duct connects the upstream and downstream parts of the pod, increasing the effective cross-sectional area and reducing drag caused by choked flow between the pod walls and the external tube. This study introduces an innovative approach to drag reduction in Hyperloop system by addressing two previously overlooked challenges. First, it overcomes the constraint of allocating central space exclusively to the passenger compartment by redirecting ducts along pod shell’s boundary. Second, it enhances spatial efficiency by implementing a distributed duct configuration. For this purpose, four different design strategies along with six and eight number of ducts were proposed. The accuracy and validity of the solution were established through four distinct phases, including two comparisons with different experimental surveys, numerical research, and an assessment of mesh dependency. Results of the simulations showed that design strategy type 1 has the best performance in drag reduction. Only a minor difference in total drag was observed by changing number of ducts. It was demonstrated that VDs can decrease the total power consumption at all pod speeds with a maximum reduction of 16 % obtained while occupying only 2.5 % of the passenger compartment space. Comparisons of the VD method with compressor revealed that with identical removed frontal area, VDs achieve greater reductions in power consumption with less occupation of pod space.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"299 ","pages":"Article 110405"},"PeriodicalIF":7.1000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325004904","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the applicability and efficiency of ventilation duct (VD) as a novel passive drag reduction method for Hyperloop pod were investigated using 3-D numerical simulations. Ventilation duct connects the upstream and downstream parts of the pod, increasing the effective cross-sectional area and reducing drag caused by choked flow between the pod walls and the external tube. This study introduces an innovative approach to drag reduction in Hyperloop system by addressing two previously overlooked challenges. First, it overcomes the constraint of allocating central space exclusively to the passenger compartment by redirecting ducts along pod shell’s boundary. Second, it enhances spatial efficiency by implementing a distributed duct configuration. For this purpose, four different design strategies along with six and eight number of ducts were proposed. The accuracy and validity of the solution were established through four distinct phases, including two comparisons with different experimental surveys, numerical research, and an assessment of mesh dependency. Results of the simulations showed that design strategy type 1 has the best performance in drag reduction. Only a minor difference in total drag was observed by changing number of ducts. It was demonstrated that VDs can decrease the total power consumption at all pod speeds with a maximum reduction of 16 % obtained while occupying only 2.5 % of the passenger compartment space. Comparisons of the VD method with compressor revealed that with identical removed frontal area, VDs achieve greater reductions in power consumption with less occupation of pod space.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.